Parallel implementation of multi-dimensional ensemble empirical mode decomposition

Li Wen Chang, Men Tzung Lo, Nasser Anssari, Ke Hsin Hsu, Norden E. Huang, Wen Mei W. Hwu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this paper, we propose and evaluate two parallel implementations of Multi-dimensional Ensemble Empirical Mode Decomposition (MEEMD) for multi-core (CPU) and many-core (GPU) architectures. Relative to a sequential C implementation, our double precision GPU implementation, using the CUDA programming model, achieves up to 48.6x speedup on NVIDIA Tesla C2050. Our multi-core CPU implementation, using the OpenMP programming model, achieves up to 11.3x speedup on two octal-core Intel Xeon x7550 CPUs.

Original languageEnglish (US)
Title of host publication2011 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2011 - Proceedings
Pages1621-1624
Number of pages4
DOIs
StatePublished - Aug 18 2011
Event36th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2011 - Prague, Czech Republic
Duration: May 22 2011May 27 2011

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
ISSN (Print)1520-6149

Other

Other36th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2011
CountryCzech Republic
CityPrague
Period5/22/115/27/11

Fingerprint

Program processors
Decomposition
Computer programming
Graphics processing unit

Keywords

  • CUDA
  • GPGPU
  • Multi-dimensional Ensemble Empirical Mode Decomposition
  • OpenMP

ASJC Scopus subject areas

  • Software
  • Signal Processing
  • Electrical and Electronic Engineering

Cite this

Chang, L. W., Lo, M. T., Anssari, N., Hsu, K. H., Huang, N. E., & Hwu, W. M. W. (2011). Parallel implementation of multi-dimensional ensemble empirical mode decomposition. In 2011 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2011 - Proceedings (pp. 1621-1624). [5946808] (ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings). https://doi.org/10.1109/ICASSP.2011.5946808

Parallel implementation of multi-dimensional ensemble empirical mode decomposition. / Chang, Li Wen; Lo, Men Tzung; Anssari, Nasser; Hsu, Ke Hsin; Huang, Norden E.; Hwu, Wen Mei W.

2011 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2011 - Proceedings. 2011. p. 1621-1624 5946808 (ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Chang, LW, Lo, MT, Anssari, N, Hsu, KH, Huang, NE & Hwu, WMW 2011, Parallel implementation of multi-dimensional ensemble empirical mode decomposition. in 2011 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2011 - Proceedings., 5946808, ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, pp. 1621-1624, 36th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2011, Prague, Czech Republic, 5/22/11. https://doi.org/10.1109/ICASSP.2011.5946808
Chang LW, Lo MT, Anssari N, Hsu KH, Huang NE, Hwu WMW. Parallel implementation of multi-dimensional ensemble empirical mode decomposition. In 2011 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2011 - Proceedings. 2011. p. 1621-1624. 5946808. (ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings). https://doi.org/10.1109/ICASSP.2011.5946808
Chang, Li Wen ; Lo, Men Tzung ; Anssari, Nasser ; Hsu, Ke Hsin ; Huang, Norden E. ; Hwu, Wen Mei W. / Parallel implementation of multi-dimensional ensemble empirical mode decomposition. 2011 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2011 - Proceedings. 2011. pp. 1621-1624 (ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings).
@inproceedings{2453169c5b2d4f03a5985eac51813f66,
title = "Parallel implementation of multi-dimensional ensemble empirical mode decomposition",
abstract = "In this paper, we propose and evaluate two parallel implementations of Multi-dimensional Ensemble Empirical Mode Decomposition (MEEMD) for multi-core (CPU) and many-core (GPU) architectures. Relative to a sequential C implementation, our double precision GPU implementation, using the CUDA programming model, achieves up to 48.6x speedup on NVIDIA Tesla C2050. Our multi-core CPU implementation, using the OpenMP programming model, achieves up to 11.3x speedup on two octal-core Intel Xeon x7550 CPUs.",
keywords = "CUDA, GPGPU, Multi-dimensional Ensemble Empirical Mode Decomposition, OpenMP",
author = "Chang, {Li Wen} and Lo, {Men Tzung} and Nasser Anssari and Hsu, {Ke Hsin} and Huang, {Norden E.} and Hwu, {Wen Mei W.}",
year = "2011",
month = "8",
day = "18",
doi = "10.1109/ICASSP.2011.5946808",
language = "English (US)",
isbn = "9781457705397",
series = "ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings",
pages = "1621--1624",
booktitle = "2011 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2011 - Proceedings",

}

TY - GEN

T1 - Parallel implementation of multi-dimensional ensemble empirical mode decomposition

AU - Chang, Li Wen

AU - Lo, Men Tzung

AU - Anssari, Nasser

AU - Hsu, Ke Hsin

AU - Huang, Norden E.

AU - Hwu, Wen Mei W.

PY - 2011/8/18

Y1 - 2011/8/18

N2 - In this paper, we propose and evaluate two parallel implementations of Multi-dimensional Ensemble Empirical Mode Decomposition (MEEMD) for multi-core (CPU) and many-core (GPU) architectures. Relative to a sequential C implementation, our double precision GPU implementation, using the CUDA programming model, achieves up to 48.6x speedup on NVIDIA Tesla C2050. Our multi-core CPU implementation, using the OpenMP programming model, achieves up to 11.3x speedup on two octal-core Intel Xeon x7550 CPUs.

AB - In this paper, we propose and evaluate two parallel implementations of Multi-dimensional Ensemble Empirical Mode Decomposition (MEEMD) for multi-core (CPU) and many-core (GPU) architectures. Relative to a sequential C implementation, our double precision GPU implementation, using the CUDA programming model, achieves up to 48.6x speedup on NVIDIA Tesla C2050. Our multi-core CPU implementation, using the OpenMP programming model, achieves up to 11.3x speedup on two octal-core Intel Xeon x7550 CPUs.

KW - CUDA

KW - GPGPU

KW - Multi-dimensional Ensemble Empirical Mode Decomposition

KW - OpenMP

UR - http://www.scopus.com/inward/record.url?scp=80051640515&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=80051640515&partnerID=8YFLogxK

U2 - 10.1109/ICASSP.2011.5946808

DO - 10.1109/ICASSP.2011.5946808

M3 - Conference contribution

AN - SCOPUS:80051640515

SN - 9781457705397

T3 - ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings

SP - 1621

EP - 1624

BT - 2011 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2011 - Proceedings

ER -