Parallel generation of extremal field maps for optimal multi-revolution continuous thrust orbit transfers

Robyn M. Woollands, Julie L. Read, Brent Macomber, Austin Probe, Ahmad Bani Younes, John L. Junkins

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We simulate hybrid thrust transfers to rendezvous with space debris in orbit about the Earth. The hybrid thrust transfer consists of a two-impulse maneuver at the terminal boundaries, which is augmented with continuous low-thrust that is sustained for the duration of the flight. This optimal control problem is formulated using the path approximation numerical integration method, Modified Chebyshev Picard Iteration (MCPI). This integration method can be formulated for solving initial and boundary value problems. The boundary value problem formulation does not require a shooting method and converges over about 1/3 of an orbit. This interval can be extended to about 95% of an orbit with regularization. In order to increase this domain even further, to multiple revolution capability, we implement a shooting method known as the Method of Particular Solutions (MPS), and utilize the MCPI initial value problem implementation for integrating the state and costate equations. The p-iteration Keplerian Lambert solver is used to provide an initial guess for solving the optimal control problem. When continuous thrust is "turned off", we find that the solution to the optimal control formulation reduces to the two-impulse two-point boundary value problem, with zero thrust coast. For some transfers we observe a reduced terminal AV cost for the hybrid thrust relative to the two-impulse, and for others it may be increased. This depends on the relative orbits and the initial phasing of the satellites. Determining the globally optimal sequence of maneuvers for retrieving orbital debris can require simulating thousands of feasible transfer trajectories. We utilize a parallel architecture on our cluster at the LASR Lab (Texas A&M), for computing the AV cost for each transfer trajectory, and display the results on an extremal field map. Both MCPI and MPS afford several layers of parallelization, and taking advantage of this reduces the computation time by at least an order of magnitude compared with the serial implementation.

Original languageEnglish (US)
Title of host publicationAstrodynamics 2015
EditorsJames D. Turner, Geoff G. Wawrzyniak, William Todd Cerven, Manoranjan Majji
PublisherUnivelt Inc.
Pages3421-3440
Number of pages20
ISBN (Print)9780877036296
StatePublished - 2016
Externally publishedYes
EventAAS/AIAA Astrodynamics Specialist Conference, ASC 2015 - Vail, United States
Duration: Aug 9 2015Aug 13 2015

Publication series

NameAdvances in the Astronautical Sciences
Volume156
ISSN (Print)0065-3438

Other

OtherAAS/AIAA Astrodynamics Specialist Conference, ASC 2015
Country/TerritoryUnited States
CityVail
Period8/9/158/13/15

ASJC Scopus subject areas

  • Aerospace Engineering
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Parallel generation of extremal field maps for optimal multi-revolution continuous thrust orbit transfers'. Together they form a unique fingerprint.

Cite this