Paleobiology of the Sand Beneath the Valders Diamicton at Valders, Wisconsin

Louis J. Maher, Norton G. Miller, Richard G. Baker, B. Brandon Curry, David M. Mickelson

Research output: Contribution to journalArticlepeer-review

Abstract

Previously undescribed pollen, plant macrofossils, molluscs, and ostracodes were recovered from a 2.5-m-thick glaciolacustrine unit of silty sand and clay at Valders, Wisconsin. The interstadial sediment was deposited about 12,200 14C yr B.P. after retreat of the Green Bay lobe that deposited diamicton of the Horicon Formation, and before advance of the Lake Michigan lobe that deposited the red-brown diamicton of the Valders Member of the Kewaunee Formation. Fluctuations of abundance of Candona subtriangulata, Cytherissa lacustris, and three other species define four ostracode biozones in the lower 1.7 m, suggesting an open lake environment that oscillated in depth and proximity to glacial ice. Pollen is dominated by Picea and Artemisia, but the low percentages of many other types of longdistance origin suggest that the terrestrial vegetation was open and far from the forest border. The upper part of the sediment, a massive sand deposited in either a shallow pond or a sluggish stream, contains a local concentration of plant macrofossils. The interpretation of a cold open environment is supported by the plant macrofossils of more than 20 species, dominated by those of open mineral soils (Arenaria rubella, Cerastium alpinum type, Silene acaulis, Sibbaldia procumbens, Dryas integrifolia, Vaccinium uliginosum var. alpinum, Armeria maritima, etc.) that in North America occur largely in the tundra and open tundra-forest ecotone of northern Canada. Ice-wedge casts occur in the sand.

Original languageEnglish (US)
Pages (from-to)208-221
Number of pages14
JournalQuaternary Research
Volume49
Issue number2
DOIs
StatePublished - Mar 1998

ASJC Scopus subject areas

  • Arts and Humanities (miscellaneous)
  • Earth-Surface Processes
  • General Earth and Planetary Sciences

Fingerprint

Dive into the research topics of 'Paleobiology of the Sand Beneath the Valders Diamicton at Valders, Wisconsin'. Together they form a unique fingerprint.

Cite this