TY - JOUR
T1 - Pairing FLUXNET sites to validate model representations of land-use/land-cover change
AU - Chen, Liang
AU - Dirmeyer, Paul A.
AU - Guo, Zhichang
AU - Schultz, Natalie M.
N1 - Publisher Copyright:
© 2017 Author.
PY - 2018/1/8
Y1 - 2018/1/8
N2 - Land surface energy and water fluxes play an important role in land-atmosphere interactions, especially for the climatic feedback effects driven by land-use/landcover change (LULCC). These have long been documented in model-based studies, but the performance of land surface models in representing LULCC-induced responses has not been investigated well. In this study, measurements from proximate paired (open versus forest) flux tower sites are used to represent observed deforestation-induced changes in surface fluxes, which are compared with simulations from the Community Land Model (CLM) and the Noah Multi-Parameterization (Noah-MP) land model. Point-scale simulations suggest the CLM can represent the observed diurnal and seasonal changes in net radiation (Rnet) and ground heat flux (G), but difficulties remain in the energy partitioning between latent (LE) and sensible (H) heat flux. The CLM does not capture the observed decreased daytime LE, and overestimates the increased H during summer. These deficiencies are mainly associated with models' greater biases over forest land-cover types and the parameterization of soil evaporation. Global gridded simulations with the CLM show uncertainties in the estimation of LE and H at the grid level for regional and global simulations. Noah-MP exhibits a similar ability to simulate the surface flux changes, but with larger biases in H, G, and Rnet change during late winter and early spring, which are related to a deficiency in estimating albedo. Differences in meteorological conditions between paired sites is not a factor in these results. Attention needs to be devoted to improving the representation of surface heat flux processes in land models to increase confidence in LULCC simulations.
AB - Land surface energy and water fluxes play an important role in land-atmosphere interactions, especially for the climatic feedback effects driven by land-use/landcover change (LULCC). These have long been documented in model-based studies, but the performance of land surface models in representing LULCC-induced responses has not been investigated well. In this study, measurements from proximate paired (open versus forest) flux tower sites are used to represent observed deforestation-induced changes in surface fluxes, which are compared with simulations from the Community Land Model (CLM) and the Noah Multi-Parameterization (Noah-MP) land model. Point-scale simulations suggest the CLM can represent the observed diurnal and seasonal changes in net radiation (Rnet) and ground heat flux (G), but difficulties remain in the energy partitioning between latent (LE) and sensible (H) heat flux. The CLM does not capture the observed decreased daytime LE, and overestimates the increased H during summer. These deficiencies are mainly associated with models' greater biases over forest land-cover types and the parameterization of soil evaporation. Global gridded simulations with the CLM show uncertainties in the estimation of LE and H at the grid level for regional and global simulations. Noah-MP exhibits a similar ability to simulate the surface flux changes, but with larger biases in H, G, and Rnet change during late winter and early spring, which are related to a deficiency in estimating albedo. Differences in meteorological conditions between paired sites is not a factor in these results. Attention needs to be devoted to improving the representation of surface heat flux processes in land models to increase confidence in LULCC simulations.
UR - http://www.scopus.com/inward/record.url?scp=85040338662&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85040338662&partnerID=8YFLogxK
U2 - 10.5194/hess-22-111-2018
DO - 10.5194/hess-22-111-2018
M3 - Article
AN - SCOPUS:85040338662
SN - 1027-5606
VL - 22
SP - 111
EP - 125
JO - Hydrology and Earth System Sciences
JF - Hydrology and Earth System Sciences
IS - 1
ER -