TY - JOUR
T1 - Oxidative potential of ambient water-soluble PM2.5 in the southeastern United States
T2 - Contrasts in sources and health associations between ascorbic acid (AA) and dithiothreitol (DTT) assays
AU - Fang, Ting
AU - Verma, Vishal
AU - T Bates, Josephine
AU - Abrams, Joseph
AU - Klein, Mitchel
AU - Strickland, J. Matthew
AU - Sarnat, E. Stefanie
AU - Chang, H. Howard
AU - Mulholland, A. James
AU - Tolbert, E. Paige
AU - Russell, G. Armistead
AU - Weber, J. Rodney
N1 - Publisher Copyright:
© Author(s) 2016.
PY - 2016/3/23
Y1 - 2016/3/23
N2 - The ability of certain components of particulate matter to induce oxidative stress through the generation of reactive oxygen species (ROS) in vivo may be one mechanism accounting for observed linkages between ambient aerosols and adverse health outcomes. A variety of assays have been used to measure this so-called aerosol oxidative potential. We developed a semi-automated system to quantify oxidative potential of filter aqueous extracts utilizing the dithiothreitol (DTT) assay and report here the development of a similar semi-automated system for the ascorbic acid (AA) assay. Approximately 500 PM2.5 filter samples collected in contrasting locations in the southeastern US were analyzed for a host of aerosol species, along with AA and DTT activities. We present a detailed contrast in findings from these two assays. Water-soluble AA activity was higher in summer and fall than in winter, with highest levels near heavily trafficked highways, whereas DTT activity was higher in winter compared to summer and fall and more spatially homogeneous. AA activity was nearly exclusively correlated with water-soluble Cu (r Combining double low line 0.70–0.94 at most sites), whereas DTT activity was correlated with organic and metal species. Source apportionment models, positive matrix factorization (PMF) and a chemical mass balance method with ensemble-averaged source impact profiles (CMB-E), suggest a strong contribution from traffic emissions and secondary processes (e.g., organic aerosol oxidation or metals mobilization by secondary acids) to both AA and DTT activities in urban Atlanta. In contrast, biomass burning was a large source for DTT activity, but insignificant for AA. AA activity was not correlated with PM2.5 mass, while DTT activity co-varied strongly with mass (r Combining double low line 0.49–0.86 across sites and seasons). Various linear models were developed to estimate AA and DTT activities for the central Atlanta Jefferson Street site, based on the CMB-E sources. The models were then used to estimate daily oxidative potential at this site over the 1998–2009 period. Time series epidemiological analyses were conducted to assess daily emergency department (ED) visits data for the five-county Atlanta metropolitan area based on the estimated 10-year backcast oxidative potential. Estimated AA activity was not statistically associated with any tested health outcome, while DTT activity was associated with ED visits for both asthma or wheeze and congestive heart failure. The findings point to the importance of both organic components and transition metals from biomass burning and mobile sources to adverse health outcomes in this region.
AB - The ability of certain components of particulate matter to induce oxidative stress through the generation of reactive oxygen species (ROS) in vivo may be one mechanism accounting for observed linkages between ambient aerosols and adverse health outcomes. A variety of assays have been used to measure this so-called aerosol oxidative potential. We developed a semi-automated system to quantify oxidative potential of filter aqueous extracts utilizing the dithiothreitol (DTT) assay and report here the development of a similar semi-automated system for the ascorbic acid (AA) assay. Approximately 500 PM2.5 filter samples collected in contrasting locations in the southeastern US were analyzed for a host of aerosol species, along with AA and DTT activities. We present a detailed contrast in findings from these two assays. Water-soluble AA activity was higher in summer and fall than in winter, with highest levels near heavily trafficked highways, whereas DTT activity was higher in winter compared to summer and fall and more spatially homogeneous. AA activity was nearly exclusively correlated with water-soluble Cu (r Combining double low line 0.70–0.94 at most sites), whereas DTT activity was correlated with organic and metal species. Source apportionment models, positive matrix factorization (PMF) and a chemical mass balance method with ensemble-averaged source impact profiles (CMB-E), suggest a strong contribution from traffic emissions and secondary processes (e.g., organic aerosol oxidation or metals mobilization by secondary acids) to both AA and DTT activities in urban Atlanta. In contrast, biomass burning was a large source for DTT activity, but insignificant for AA. AA activity was not correlated with PM2.5 mass, while DTT activity co-varied strongly with mass (r Combining double low line 0.49–0.86 across sites and seasons). Various linear models were developed to estimate AA and DTT activities for the central Atlanta Jefferson Street site, based on the CMB-E sources. The models were then used to estimate daily oxidative potential at this site over the 1998–2009 period. Time series epidemiological analyses were conducted to assess daily emergency department (ED) visits data for the five-county Atlanta metropolitan area based on the estimated 10-year backcast oxidative potential. Estimated AA activity was not statistically associated with any tested health outcome, while DTT activity was associated with ED visits for both asthma or wheeze and congestive heart failure. The findings point to the importance of both organic components and transition metals from biomass burning and mobile sources to adverse health outcomes in this region.
UR - http://www.scopus.com/inward/record.url?scp=84961937775&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84961937775&partnerID=8YFLogxK
U2 - 10.5194/acp-16-3865-2016
DO - 10.5194/acp-16-3865-2016
M3 - Article
AN - SCOPUS:84961937775
SN - 1680-7316
VL - 16
SP - 3865
EP - 3879
JO - Atmospheric Chemistry and Physics
JF - Atmospheric Chemistry and Physics
IS - 6
ER -