Overcoming scaling challenges in biomolecular simulations across multiple platforms

Abhinav Bhatelé, Sameer Kumarz, Chao Mei, James C. Phillips, Gengbin Zheng, Laxmikant V. Kalé

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

NAMD is a portable parallel application for biomolecular simulations. NAMD pioneered the use of hybrid spatial and force decomposition, a technique now used by most scalable programs for biomolecular simulations, including Blue Matter and Desmond developed by IBM and D. E. Shaw respectively. NAMD has been developed using Charm++ and benefits from its adaptive communication-computation overlap and dynamic load balancing. This paper focuses on new scalability challenges in biomolecular simulations: using much larger machines and simulating molecular systems with millions of atoms. We describe new techniques developed to overcome these challenges. Since our approach involves automatic adaptive runtime optimizations, one interesting issue involves dealing with harmful interaction between multiple adaptive strategies. NAMD runs on a wide variety of platforms, ranging from commodity clusters to supercomputers. It also scales to large machines: we present results for up to 65,536 processors on IBM's Blue Gene/L and 8,192 processors on Cray XT3/XT4. In addition, we present performance results on NCSA's Abe, SDSC's DataStar and TACC's LoneStar cluster, to demonstrate efficient portability. We also compare NAMD with Desmond and Blue Matter.

Original languageEnglish (US)
Title of host publicationIPDPS Miami 2008 - Proceedings of the 22nd IEEE International Parallel and Distributed Processing Symposium, Program and CD-ROM
DOIs
StatePublished - 2008
EventIPDPS 2008 - 22nd IEEE International Parallel and Distributed Processing Symposium - Miami, FL, United States
Duration: Apr 14 2008Apr 18 2008

Publication series

NameIPDPS Miami 2008 - Proceedings of the 22nd IEEE International Parallel and Distributed Processing Symposium, Program and CD-ROM

Other

OtherIPDPS 2008 - 22nd IEEE International Parallel and Distributed Processing Symposium
Country/TerritoryUnited States
CityMiami, FL
Period4/14/084/18/08

ASJC Scopus subject areas

  • Hardware and Architecture
  • Software
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Overcoming scaling challenges in biomolecular simulations across multiple platforms'. Together they form a unique fingerprint.

Cite this