TY - JOUR
T1 - Overcoming inefficient cellobiose fermentation by cellobiose phosphorylase in the presence of xylose
AU - Chomvong, Kulika
AU - Kordić, Vesna
AU - Li, Xin
AU - Bauer, Stefan
AU - Gillespie, Abigail E.
AU - Ha, Suk Jin
AU - Oh, Eun Joong
AU - Galazka, Jonathan M.
AU - Jin, Yong Su
AU - Cate, Jamie H.D.
N1 - Funding Information:
This work was supported by funding from the Energy Biosciences Institute to YSJ and JHDC. The authors thank Dr Soo Rin Kim for generously providing S. cerevisiae SR8-a, and Dr Yuping Lin, Dr Ligia Acosta-Sampson, and Dr Owen W Ryan for helpful discussions.
PY - 2014/6/7
Y1 - 2014/6/7
N2 - Background: Cellobiose and xylose co-fermentation holds promise for efficiently producing biofuels from plant biomass. Cellobiose phosphorylase (CBP), an intracellular enzyme generally found in anaerobic bacteria, cleaves cellobiose to glucose and glucose-1-phosphate, providing energetic advantages under the anaerobic conditions required for large-scale biofuel production. However, the efficiency of CBP to cleave cellobiose in the presence of xylose is unknown. This study investigated the effect of xylose on anaerobic CBP-mediated cellobiose fermentation by Saccharomyces cerevisiae. Results: Yeast capable of fermenting cellobiose by the CBP pathway consumed cellobiose and produced ethanol at rates 61% and 42% slower, respectively, in the presence of xylose than in its absence. The system generated significant amounts of the byproduct 4-O-β-d-glucopyranosyl-d-xylose (GX), produced by CBP from glucose-1-phosphate and xylose. In vitro competition assays identified xylose as a mixed-inhibitor for cellobiose phosphorylase activity. The negative effects of xylose were effectively relieved by efficient cellobiose and xylose co-utilization. GX was also shown to be a substrate for cleavage by an intracellular β-glucosidase. Conclusions: Xylose exerted negative impacts on CBP-mediated cellobiose fermentation by acting as a substrate for GX byproduct formation and a mixed-inhibitor for cellobiose phosphorylase activity. Future efforts will require efficient xylose utilization, GX cleavage by a β-glucosidase, and/or a CBP with improved substrate specificity to overcome the negative impacts of xylose on CBP in cellobiose and xylose co-fermentation.
AB - Background: Cellobiose and xylose co-fermentation holds promise for efficiently producing biofuels from plant biomass. Cellobiose phosphorylase (CBP), an intracellular enzyme generally found in anaerobic bacteria, cleaves cellobiose to glucose and glucose-1-phosphate, providing energetic advantages under the anaerobic conditions required for large-scale biofuel production. However, the efficiency of CBP to cleave cellobiose in the presence of xylose is unknown. This study investigated the effect of xylose on anaerobic CBP-mediated cellobiose fermentation by Saccharomyces cerevisiae. Results: Yeast capable of fermenting cellobiose by the CBP pathway consumed cellobiose and produced ethanol at rates 61% and 42% slower, respectively, in the presence of xylose than in its absence. The system generated significant amounts of the byproduct 4-O-β-d-glucopyranosyl-d-xylose (GX), produced by CBP from glucose-1-phosphate and xylose. In vitro competition assays identified xylose as a mixed-inhibitor for cellobiose phosphorylase activity. The negative effects of xylose were effectively relieved by efficient cellobiose and xylose co-utilization. GX was also shown to be a substrate for cleavage by an intracellular β-glucosidase. Conclusions: Xylose exerted negative impacts on CBP-mediated cellobiose fermentation by acting as a substrate for GX byproduct formation and a mixed-inhibitor for cellobiose phosphorylase activity. Future efforts will require efficient xylose utilization, GX cleavage by a β-glucosidase, and/or a CBP with improved substrate specificity to overcome the negative impacts of xylose on CBP in cellobiose and xylose co-fermentation.
KW - Cellobiose
KW - Cellobiose phosphorylase
KW - Glucopyranosyl-xylose
KW - Inhibition
KW - Xylose
UR - http://www.scopus.com/inward/record.url?scp=84902871353&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84902871353&partnerID=8YFLogxK
U2 - 10.1186/1754-6834-7-85
DO - 10.1186/1754-6834-7-85
M3 - Article
AN - SCOPUS:84902871353
SN - 1754-6834
VL - 7
JO - Biotechnology for Biofuels
JF - Biotechnology for Biofuels
IS - 1
M1 - 85
ER -