Orthogonal range searching on the RAM, revisited

Timothy M. Chan, Kasper Green Larsen, Mihai Pǎtraşcu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We present a number of new results on one of the most extensively studied topics in computational geometry, orthogonal range searching. All our results are in the standard word RAM model: 1. We present two data structures for 2-d orthogonal range emptiness. The first achieves O(n lg lg n) space and O(lg lg n) query time, assuming that the n given points are in rank space. This improves the previous results by Alstrup, Brodal, and Rauhe (FOCS'00), with O(n lg ε n) space and O(lg lg n) query time, or with O(n lg lg n) space and O(lg2 lg n) query time. Our second data structure uses O(n) space and answers queries in O(lgε n) time. The best previous O(n)-space data structure, due to Nekrich (WADS'07), answers queries in O(lg n/ lg lg n) time. 2. We give a data structure for 3-d orthogonal range reporting with O(n lg1+ε n) space and O(lg lg n+k) query time for points in rank space, for any constant ε > 0. This improves the previous results by Afshani (ESA'08), Karpinski and Nekrich (COCOON'09), and Chan (SODA'11), with O(n lg1+ε n) space and O(lg lg n + k) query time, or with O(n lg1+ε n) space and O(lg2 lg n + k) query time. Consequently, we obtain improved upper bounds for orthogonal range reporting in all constant dimensions above 3. Our approach also leads to a new data structure for 2-d orthogonal range minimum queries with O(n lg ε n) space and O(lg lg n) query time for points in rank space. 3. We give a randomized algorithm for 4-d offline dominance range reporting/emptiness with running time O(n lg n) plus the output size. This resolves two open problems (both appeared in Preparata and Shamos' seminal book): a. given a set of n axis-aligned rectangles in the plane, we can report all k enclosure pairs (i.e., pairs (r1, r2) where rectangle r1 completely encloses rectangle r2) in O(n lg n + k) expected time; b. given a set of n points in 4-d, we can find all maximal points (points not dominated by any other points) in O(n lg n) expected time. The most recent previous development on (a) was reported back in SoCG'95 by Gupta, Janardan, Smid, and Dasgupta, whose main result was an O([n lg n+k] lg lg n) algorithm. The best previous result on (b) was an O(n lg n lg lg n) algorithm due to Gabow, Bentley, and Tarjan-from STOC'84! As a consequence, we also obtain the current-record time bound for the maxima problem in all constant dimensions above 4.

Original languageEnglish (US)
Title of host publicationProceedings of the 27th Annual Symposium on Computational Geometry, SCG'11
Pages1-10
Number of pages10
DOIs
StatePublished - 2011
Externally publishedYes
Event27th Annual ACM Symposium on Computational Geometry, SCG'11 - Paris, France
Duration: Jun 13 2011Jun 15 2011

Publication series

NameProceedings of the Annual Symposium on Computational Geometry

Other

Other27th Annual ACM Symposium on Computational Geometry, SCG'11
Country/TerritoryFrance
CityParis
Period6/13/116/15/11

Keywords

  • Dominance
  • Geometric data structures
  • Maxima
  • Orthogonal range searching
  • Word RAM

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Geometry and Topology
  • Computational Mathematics

Fingerprint

Dive into the research topics of 'Orthogonal range searching on the RAM, revisited'. Together they form a unique fingerprint.

Cite this