### Abstract

Projection pursuit is concerned with finding interesting low-dimensional subspace of multivariate data. In this paper we proposed a genetic optimization approach to find the globally optimal orthogonal subspace given training data and user defined criterion on what subspaces are interesting. We then applied this approach to human face recognition. Suppose face recognition is done by simple correlation, a subspace is obtained using our approach that achieve the lowest error rate of face recognition given FERET data set as training set. As Yambor [W.S. Yambor, et al., 2000] showed in experiments that PCA subspace is a pretty good subspace for correlation-based face recognition, we compared the performance of the sub-space we obtained with that of PCA subspace. Experiment result showed this subspace outperformed PCA subspace.

Original language | English (US) |
---|---|

Title of host publication | Proceedings of the 2003 IEEE Workshop on Statistical Signal Processing, SSP 2003 |

Publisher | IEEE Computer Society |

Pages | 266-269 |

Number of pages | 4 |

ISBN (Electronic) | 0780379977 |

DOIs | |

State | Published - Jan 1 2003 |

Event | IEEE Workshop on Statistical Signal Processing, SSP 2003 - St. Louis, United States Duration: Sep 28 2003 → Oct 1 2003 |

### Publication series

Name | IEEE Workshop on Statistical Signal Processing Proceedings |
---|---|

Volume | 2003-January |

### Other

Other | IEEE Workshop on Statistical Signal Processing, SSP 2003 |
---|---|

Country | United States |

City | St. Louis |

Period | 9/28/03 → 10/1/03 |

### Keywords

- Constraint optimization
- Data analysis
- Error analysis
- Face recognition
- Gaussian processes
- Genetic algorithms
- Humans
- Independent component analysis
- Principal component analysis
- Training data

### ASJC Scopus subject areas

- Electrical and Electronic Engineering
- Applied Mathematics
- Signal Processing
- Computer Science Applications

## Fingerprint Dive into the research topics of 'Orthogonal projection pursuit using genetic optimization'. Together they form a unique fingerprint.

## Cite this

*Proceedings of the 2003 IEEE Workshop on Statistical Signal Processing, SSP 2003*(pp. 266-269). [1289395] (IEEE Workshop on Statistical Signal Processing Proceedings; Vol. 2003-January). IEEE Computer Society. https://doi.org/10.1109/SSP.2003.1289395