Ordovician Explosive Volcanism

Warren D. Huff, Stig M. Bergstroem, Dennis R. Kolata, Stanley C. Finney (Editor), William B. N. Berry (Editor)

Research output: Book/Report/Conference proceedingTechnical report

Abstract

Explosive eruptions from volcanoes are recorded in the stratigraphic record throughout the Phanerozoic, but evidence of these eruptions in the form of preserved tephra layers appears to be concentrated at times of active plate collision and concomitant high stands of sea level. The products of volcanic eruptions are lavas, tephra, and gases. Basaltic magmas (low-silica content) are usually erupted in the form of lava flows, whereas rhyolitic magmas (high-silica content) are commonly explosively erupted as plinian and ultraplinian plumes, and associated pyroclastic flows. Fallout tephras are preserved in ancient sedimentary sequences as tonsteins, bentonites, and K-bentonites. Middle Ordovician K-bentonites represent some of the largest known fallout ash deposits in the Phanerozoic Era. They cover minimally 2.2X10 (super 6) km (super 2) in eastern North America and 6.9X10 (super 5) km (super 2) in central and northwestern Europe as a result of explosive volcanism, which affected both Laurentia and Baltica during the closure of the Iapetus Ocean. The three most widespread beds are the Deicke and Millbrig K-bentonites in North America and the Kinnekulle K-bentonite in northwestern Europe. Similar successions are well known in South America and China. Sedimentation rates of volcanic ejecta range from meters per year locally to approximately 1 mm/1000 yr in the deep sea. Volcanogenic sediments react with seawater to produce secondary phases such as zeolites and clay minerals. Studies of recent ashfall behavior suggest that the preservation potential in the stratigraphic record can be viewed as somewhat remarkable in that such sudden events are preserved at all, much less produce such a wealth of valuable geologic information.

Keywords

  • ISGS

Fingerprint Dive into the research topics of 'Ordovician Explosive Volcanism'. Together they form a unique fingerprint.

Cite this