Options for improving the energy efficiency of intermodal freight trains

Yung Cheng Lai, Christopher P.L. Barkan

Research output: Contribution to journalArticlepeer-review

Abstract

Intermodal trains are typically the fastest trains operated by North American freight railroads. Ironically, these trains tend to have the poorest aerodynamic characteristics. Because of constraints imposed by equipment design and diversity, intermodal trains incur greater aerodynamic penalties and increased fuel consumption than other trains. Improving the loading patterns of intermodal trains has the potential to improve aerodynamic characteristics and thus fuel efficiency. Train aerodynamics and resistance analyses were conducted on several alternative intermodal train-loading configurations. Matching intermodal loads with cars of an appropriate length reduces the gap length between loads and thereby improves airflow. Filling empty slots with empty containers or trailers also reduces aerodynamic resistance and improves energy efficiency, despite the additional weight penalty and consequent increase in bearing and rolling resistance. Depending on the particular train configuration, train resistance can be lowered by as much as 27% and fuel savings by 1 gal/mi per train.

Original languageEnglish (US)
Pages (from-to)47-55
Number of pages9
JournalTransportation Research Record
Issue number1916
StatePublished - 2005

ASJC Scopus subject areas

  • Civil and Structural Engineering
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Options for improving the energy efficiency of intermodal freight trains'. Together they form a unique fingerprint.

Cite this