Abstract

Nitrogen (N) management is critical to sustain soil fertility and crop production while minimizing the negative environmental impact, but is challenging to optimize. This paper proposes an intelligent N management system using deep reinforcement learning (RL) and crop simulations with Decision Support System for Agrotechnology Transfer (DSSAT). We first formulate the N management problem as an RL problem. We then train management policies with deep Q-network and soft actor-critic algorithms, and the Gym-DSSAT interface that allows for daily interactions between the simulated crop environment and RL agents. According to the experiments on the maize crop in both Iowa and Florida in the US, our RL-trained policies outperform previous empirical methods by achieving higher or similar yield while using less fertilizers.

Original languageEnglish (US)
Title of host publicationProceedings - 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2022
PublisherIEEE Computer Society
Pages1711-1719
Number of pages9
ISBN (Electronic)9781665487399
DOIs
StatePublished - 2022
Event2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2022 - New Orleans, United States
Duration: Jun 19 2022Jun 20 2022

Publication series

NameIEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
Volume2022-June
ISSN (Print)2160-7508
ISSN (Electronic)2160-7516

Conference

Conference2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2022
Country/TerritoryUnited States
CityNew Orleans
Period6/19/226/20/22

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Optimizing Nitrogen Management with Deep Reinforcement Learning and Crop Simulations'. Together they form a unique fingerprint.

Cite this