Optimizing Black-box Metrics with Iterative Example Weighting

Gaurush Hiranandani, Jatin Mathur, Harikrishna Narasimhan, Mahdi Milani Fard, Oluwasanmi Koyejo

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We consider learning to optimize a classification metric defined by a black-box function of the confusion matrix. Such black-box learning settings are ubiquitous, for example, when the learner only has query access to the metric of interest, or in noisy-label and domain adaptation applications where the learner must evaluate the metric via performance evaluation using a small validation sample. Our approach is to adaptively learn example weights on the training dataset such that the resulting weighted objective best approximates the metric on the validation sample. We show how to model and estimate the example weights and use them to iteratively post-shift a pre-trained class probability estimator to construct a classifier. We also analyze the resulting procedure's statistical properties. Experiments on various label noise, domain shift, and fair classification setups confirm that our proposal compares favorably to the state-of-the-art baselines for each application.

Original languageEnglish (US)
Title of host publicationProceedings of the 38th International Conference on Machine Learning, ICML 2021
PublisherML Research Press
Pages4239-4249
Number of pages11
ISBN (Electronic)9781713845065
StatePublished - 2021
Event38th International Conference on Machine Learning, ICML 2021 - Virtual, Online
Duration: Jul 18 2021Jul 24 2021

Publication series

NameProceedings of Machine Learning Research
Volume139
ISSN (Electronic)2640-3498

Conference

Conference38th International Conference on Machine Learning, ICML 2021
CityVirtual, Online
Period7/18/217/24/21

ASJC Scopus subject areas

  • Artificial Intelligence
  • Software
  • Control and Systems Engineering
  • Statistics and Probability

Fingerprint

Dive into the research topics of 'Optimizing Black-box Metrics with Iterative Example Weighting'. Together they form a unique fingerprint.

Cite this