Optimization and analysis of the pap@k metric for recommender systems

Gaurush Hiranandani, Warut Vijitbenjaronk, Oluwasanmi Koyejo, Prateek Jain

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Modern recommendation and notifcation systems must be robust to data imbalance, limitations on the number of recommendations/notifcations, and heterogeneous engagement profles across users. The pAp@k metric, which combines the partial-AUC and the precision@k metrics, was recently proposed to evaluate such recommendation systems and has been used in real-world deployments. Conceptually, pAp@k measures the probability of correctly ranking a top-ranked positive instance over top-ranked negative instances. Due to the combinatorial aspect surfaced by topranked points, little is known about the characteristics and optimization methods of pAp@k. In this paper, we analyze the learning-theoretic properties of pAp@k, particularly its benefts in evaluating modern recommender systems, and propose novel surrogates that are consistent under certain data regularity conditions. We then provide gradient descent based algorithms to optimize the surrogates directly. Our analysis and experimental evaluation suggest that pAp@k indeed exhibits a certain dual behavior with respect to partialAUC and precision@k. Moreover, the proposed methods outperform all the baselines in various applications. Taken together, our results motivate the use of pAp@k for large-scale recommender systems with heterogeneous user-engagement.

Original languageEnglish (US)
Title of host publication37th International Conference on Machine Learning, ICML 2020
EditorsHal Daume, Aarti Singh
PublisherInternational Machine Learning Society (IMLS)
Pages4210-4220
Number of pages11
ISBN (Electronic)9781713821120
StatePublished - 2020
Event37th International Conference on Machine Learning, ICML 2020 - Virtual, Online
Duration: Jul 13 2020Jul 18 2020

Publication series

Name37th International Conference on Machine Learning, ICML 2020
VolumePartF168147-6

Conference

Conference37th International Conference on Machine Learning, ICML 2020
CityVirtual, Online
Period7/13/207/18/20

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Human-Computer Interaction
  • Software

Fingerprint

Dive into the research topics of 'Optimization and analysis of the pap@k metric for recommender systems'. Together they form a unique fingerprint.

Cite this