TY - GEN
T1 - Optimization and analysis of the pap@k metric for recommender systems
AU - Hiranandani, Gaurush
AU - Vijitbenjaronk, Warut
AU - Koyejo, Oluwasanmi
AU - Jain, Prateek
N1 - Publisher Copyright:
© International Conference on Machine Learning, ICML 2020. All rights reserved.
PY - 2020
Y1 - 2020
N2 - Modern recommendation and notifcation systems must be robust to data imbalance, limitations on the number of recommendations/notifcations, and heterogeneous engagement profles across users. The pAp@k metric, which combines the partial-AUC and the precision@k metrics, was recently proposed to evaluate such recommendation systems and has been used in real-world deployments. Conceptually, pAp@k measures the probability of correctly ranking a top-ranked positive instance over top-ranked negative instances. Due to the combinatorial aspect surfaced by topranked points, little is known about the characteristics and optimization methods of pAp@k. In this paper, we analyze the learning-theoretic properties of pAp@k, particularly its benefts in evaluating modern recommender systems, and propose novel surrogates that are consistent under certain data regularity conditions. We then provide gradient descent based algorithms to optimize the surrogates directly. Our analysis and experimental evaluation suggest that pAp@k indeed exhibits a certain dual behavior with respect to partialAUC and precision@k. Moreover, the proposed methods outperform all the baselines in various applications. Taken together, our results motivate the use of pAp@k for large-scale recommender systems with heterogeneous user-engagement.
AB - Modern recommendation and notifcation systems must be robust to data imbalance, limitations on the number of recommendations/notifcations, and heterogeneous engagement profles across users. The pAp@k metric, which combines the partial-AUC and the precision@k metrics, was recently proposed to evaluate such recommendation systems and has been used in real-world deployments. Conceptually, pAp@k measures the probability of correctly ranking a top-ranked positive instance over top-ranked negative instances. Due to the combinatorial aspect surfaced by topranked points, little is known about the characteristics and optimization methods of pAp@k. In this paper, we analyze the learning-theoretic properties of pAp@k, particularly its benefts in evaluating modern recommender systems, and propose novel surrogates that are consistent under certain data regularity conditions. We then provide gradient descent based algorithms to optimize the surrogates directly. Our analysis and experimental evaluation suggest that pAp@k indeed exhibits a certain dual behavior with respect to partialAUC and precision@k. Moreover, the proposed methods outperform all the baselines in various applications. Taken together, our results motivate the use of pAp@k for large-scale recommender systems with heterogeneous user-engagement.
UR - http://www.scopus.com/inward/record.url?scp=85105355741&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85105355741&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85105355741
T3 - 37th International Conference on Machine Learning, ICML 2020
SP - 4210
EP - 4220
BT - 37th International Conference on Machine Learning, ICML 2020
A2 - Daume, Hal
A2 - Singh, Aarti
PB - International Machine Learning Society (IMLS)
T2 - 37th International Conference on Machine Learning, ICML 2020
Y2 - 13 July 2020 through 18 July 2020
ER -