TY - GEN
T1 - Optimal subcooling in vapor compression systems via extremum seeking control
AU - Koeln, Justin P.
AU - Alleyne, Andrew G.
PY - 2013/1/1
Y1 - 2013/1/1
N2 - Building systems constitute a significant portion of the overall energy consumed each year in the U.S., and a large portion of this energy is used by air-conditioning systems. Therefore, the efficiency of these systems is important. This paper presents a method to increase system efficiency using an alternative system architecture for vapor compression systems. This architecture creates an additional degree of freedom which allows for independent control of condenser subcooling. It is found that there exists a non-zero subcooling that maximizes system efficiency; however, this optimal subcooling can change with different operating conditions. Thus, extremum seeking control is applied to find and track the optimal subcooling using only limited information of the system. In a simulation case study, a 10% reduction in energy consumption is reported when using the alternative system architecture and extremum seeking control when compared to a conventional system configuration.
AB - Building systems constitute a significant portion of the overall energy consumed each year in the U.S., and a large portion of this energy is used by air-conditioning systems. Therefore, the efficiency of these systems is important. This paper presents a method to increase system efficiency using an alternative system architecture for vapor compression systems. This architecture creates an additional degree of freedom which allows for independent control of condenser subcooling. It is found that there exists a non-zero subcooling that maximizes system efficiency; however, this optimal subcooling can change with different operating conditions. Thus, extremum seeking control is applied to find and track the optimal subcooling using only limited information of the system. In a simulation case study, a 10% reduction in energy consumption is reported when using the alternative system architecture and extremum seeking control when compared to a conventional system configuration.
UR - http://www.scopus.com/inward/record.url?scp=84902437791&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84902437791&partnerID=8YFLogxK
U2 - 10.1115/DSCC2013-3934
DO - 10.1115/DSCC2013-3934
M3 - Conference contribution
AN - SCOPUS:84902437791
SN - 9780791856123
T3 - ASME 2013 Dynamic Systems and Control Conference, DSCC 2013
BT - Aerial Vehicles; Aerospace Control; Alternative Energy; Automotive Control Systems; Battery Systems; Beams and Flexible Structures; Biologically-Inspired Control and its Applications;
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2013 Dynamic Systems and Control Conference, DSCC 2013
Y2 - 21 October 2013 through 23 October 2013
ER -