Optimal subcooling in vapor compression systems via extremum seeking control

Justin P. Koeln, Andrew G. Alleyne

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Building systems constitute a significant portion of the overall energy consumed each year in the U.S., and a large portion of this energy is used by air-conditioning systems. Therefore, the efficiency of these systems is important. This paper presents a method to increase system efficiency using an alternative system architecture for vapor compression systems. This architecture creates an additional degree of freedom which allows for independent control of condenser subcooling. It is found that there exists a non-zero subcooling that maximizes system efficiency; however, this optimal subcooling can change with different operating conditions. Thus, extremum seeking control is applied to find and track the optimal subcooling using only limited information of the system. In a simulation case study, a 10% reduction in energy consumption is reported when using the alternative system architecture and extremum seeking control when compared to a conventional system configuration.

Original languageEnglish (US)
Title of host publicationAerial Vehicles; Aerospace Control; Alternative Energy; Automotive Control Systems; Battery Systems; Beams and Flexible Structures; Biologically-Inspired Control and its Applications;
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Print)9780791856123
DOIs
StatePublished - Jan 1 2013
EventASME 2013 Dynamic Systems and Control Conference, DSCC 2013 - Palo Alto, CA, United States
Duration: Oct 21 2013Oct 23 2013

Publication series

NameASME 2013 Dynamic Systems and Control Conference, DSCC 2013
Volume1

Other

OtherASME 2013 Dynamic Systems and Control Conference, DSCC 2013
CountryUnited States
CityPalo Alto, CA
Period10/21/1310/23/13

ASJC Scopus subject areas

  • Control and Systems Engineering

Fingerprint Dive into the research topics of 'Optimal subcooling in vapor compression systems via extremum seeking control'. Together they form a unique fingerprint.

  • Cite this

    Koeln, J. P., & Alleyne, A. G. (2013). Optimal subcooling in vapor compression systems via extremum seeking control. In Aerial Vehicles; Aerospace Control; Alternative Energy; Automotive Control Systems; Battery Systems; Beams and Flexible Structures; Biologically-Inspired Control and its Applications; [V001T13A005] (ASME 2013 Dynamic Systems and Control Conference, DSCC 2013; Vol. 1). American Society of Mechanical Engineers (ASME). https://doi.org/10.1115/DSCC2013-3934