Optimal Deceptive and Reference Policies for Supervisory Control

Mustafa O. Karabag, Melkior Ornik, Ufuk Topcu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The use of deceptive strategies is important for an agent that attempts not to reveal his intentions in an adversarial environment. We consider a setting in which a supervisor provides a reference policy and expects an agent to follow the reference policy and perform a task. The agent may instead follow a different, deceptive policy to achieve a different task. We model the environment and the behavior of the agent with a Markov decision process, represent the tasks of the agent and the supervisor with linear temporal logic formulae, and study the synthesis of optimal deceptive policies for such agents. We also study the synthesis of optimal reference policies that prevents deceptive strategies of the agent and achieves the supervisor's task with high probability. We show that the synthesis of deceptive policies has a convex optimization problem formulation, while the synthesis of reference policies requires solving a nonconvex optimization problem.

Original languageEnglish (US)
Title of host publication2019 IEEE 58th Conference on Decision and Control, CDC 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1323-1330
Number of pages8
ISBN (Electronic)9781728113982
DOIs
StatePublished - Dec 2019
Event58th IEEE Conference on Decision and Control, CDC 2019 - Nice, France
Duration: Dec 11 2019Dec 13 2019

Publication series

NameProceedings of the IEEE Conference on Decision and Control
Volume2019-December
ISSN (Print)0743-1546
ISSN (Electronic)2576-2370

Conference

Conference58th IEEE Conference on Decision and Control, CDC 2019
Country/TerritoryFrance
CityNice
Period12/11/1912/13/19

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Modeling and Simulation
  • Control and Optimization

Fingerprint

Dive into the research topics of 'Optimal Deceptive and Reference Policies for Supervisory Control'. Together they form a unique fingerprint.

Cite this