TY - GEN
T1 - Optimal bus sequencing for escape routing in dense PCBs
AU - Kong, Hui
AU - Yan, Tan
AU - Wong, Martin D.F.
AU - Ozdal, Muhammet Mustafa
PY - 2007
Y1 - 2007
N2 - The PCB routing problem has become so difficult that no commercial CAD software can provide an automatic solution for high-end boards. Existing algorithms for escape routing, an important step in PCB routing, are net-centric. Directly applying these algorithms will result in mixing nets of different buses together. But in practice, it is preferred to bundle together nets in a bus. Thus the bus-centric escape routing problem can be naturally divided into two subproblems: (1) finding a subset of buses that can be routed on the same layer without net mixings and crossings, which we refer to as the bus sequencing problem, and (2) finding the escape routing solutions for each chosen bus, which can be solved by a netcentric escape router. In this paper, we solve the bus sequencing problem. We introduce a new optimization problem called the Longest Common Interval Sequence (LCIS) problem and model the bus sequencing problem as an LCIS problem. By using dynamic programming and balanced search tree data structure, we present an LCIS algorithm which can find an optimal solution in O(n log n) time. We also show that O(n log n) is a lower-bound for this problem and thus the time complexity of our algorithm is also the best possible.
AB - The PCB routing problem has become so difficult that no commercial CAD software can provide an automatic solution for high-end boards. Existing algorithms for escape routing, an important step in PCB routing, are net-centric. Directly applying these algorithms will result in mixing nets of different buses together. But in practice, it is preferred to bundle together nets in a bus. Thus the bus-centric escape routing problem can be naturally divided into two subproblems: (1) finding a subset of buses that can be routed on the same layer without net mixings and crossings, which we refer to as the bus sequencing problem, and (2) finding the escape routing solutions for each chosen bus, which can be solved by a netcentric escape router. In this paper, we solve the bus sequencing problem. We introduce a new optimization problem called the Longest Common Interval Sequence (LCIS) problem and model the bus sequencing problem as an LCIS problem. By using dynamic programming and balanced search tree data structure, we present an LCIS algorithm which can find an optimal solution in O(n log n) time. We also show that O(n log n) is a lower-bound for this problem and thus the time complexity of our algorithm is also the best possible.
UR - http://www.scopus.com/inward/record.url?scp=50249107944&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=50249107944&partnerID=8YFLogxK
U2 - 10.1109/ICCAD.2007.4397296
DO - 10.1109/ICCAD.2007.4397296
M3 - Conference contribution
AN - SCOPUS:50249107944
SN - 1424413826
SN - 9781424413829
T3 - IEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers, ICCAD
SP - 390
EP - 395
BT - 2007 IEEE/ACM International Conference on Computer-Aided Design, ICCAD
T2 - 2007 IEEE/ACM International Conference on Computer-Aided Design, ICCAD
Y2 - 4 November 2007 through 8 November 2007
ER -