TY - JOUR
T1 - Optical properties of In2O3 from experiment and first-principles theory
T2 - Influence of lattice screening
AU - Schleife, André
AU - Neumann, Maciej D.
AU - Esser, Norbert
AU - Galazka, Zbigniew
AU - Gottwald, Alexander
AU - Nixdorf, Jakob
AU - Goldhahn, Rüdiger
AU - Feneberg, Martin
N1 - Publisher Copyright:
© 2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft.
PY - 2018/5
Y1 - 2018/5
N2 - The framework of many-body perturbation theory led to deep insight into electronic structure and optical properties of diverse systems and, in particular, many semiconductors. It relies on an accurate approximation of the screened Coulomb electron-electron interaction W, that in current implementations is usually achieved by describing electronic interband transitions. However, our results for several oxide semiconductors indicate that for polar materials it is necessary to also account for lattice contributions to dielectric screening. To clarify this question in this work, we combine highly accurate experimentation and cutting-edge theoretical spectroscopy to elucidate the interplay of quasiparticle and excitonic effects for cubic bixbyite In2O3 across an unprecedentedly large photon energy range. We then show that the agreement between experiment and theory is excellent and, thus, validate that the physics of quasiparticle and excitonic effects is described accurately by these first-principles techniques, except for the immediate vicinity of the absorption onset. Finally, our combination of experimental and computational data clearly establishes the need for including a lattice contribution to dielectric screening in the screened electron-electron interaction, in order to improve the description of excitonic effects near the absorption edge.
AB - The framework of many-body perturbation theory led to deep insight into electronic structure and optical properties of diverse systems and, in particular, many semiconductors. It relies on an accurate approximation of the screened Coulomb electron-electron interaction W, that in current implementations is usually achieved by describing electronic interband transitions. However, our results for several oxide semiconductors indicate that for polar materials it is necessary to also account for lattice contributions to dielectric screening. To clarify this question in this work, we combine highly accurate experimentation and cutting-edge theoretical spectroscopy to elucidate the interplay of quasiparticle and excitonic effects for cubic bixbyite In2O3 across an unprecedentedly large photon energy range. We then show that the agreement between experiment and theory is excellent and, thus, validate that the physics of quasiparticle and excitonic effects is described accurately by these first-principles techniques, except for the immediate vicinity of the absorption onset. Finally, our combination of experimental and computational data clearly establishes the need for including a lattice contribution to dielectric screening in the screened electron-electron interaction, in order to improve the description of excitonic effects near the absorption edge.
KW - ellipsometry
KW - excitonic effects
KW - first-principles simulations
KW - indium oxide
KW - optical properties
UR - http://www.scopus.com/inward/record.url?scp=85048061731&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85048061731&partnerID=8YFLogxK
U2 - 10.1088/1367-2630/aabeb0
DO - 10.1088/1367-2630/aabeb0
M3 - Article
AN - SCOPUS:85048061731
SN - 1367-2630
VL - 20
JO - New Journal of Physics
JF - New Journal of Physics
IS - 5
M1 - 053016
ER -