Optical biopsy with optical coherence tomography: Feasibility for surgical diagnostics

Mark E. Brezinski, Gary J. Tearney, Stephen A. Boppart, Eric A. Swanson, James F. Southern, James G. Fujimoto

Research output: Contribution to journalArticlepeer-review


Background: Optical coherence tomography (OCT) is a recently developed compact technology which uses infrared light to perform cross-sectional imaging on a micrometer scale. Since OCT provides imaging at a resolution comparable to conventional histology and does not require direct contact with the tissue surface, a role in real-time surgical diagnostics represents a logical extension. In this work, we test the feasibility of OCT for surgical diagnostics by demonstrating im aging in tissue relevant to microsurgical intervention, a previously undescribed observation. Materials and methods: Over 50 sites on nervous, reproductive, and microvascular specimens from 10 patients were examined postmortem with OCT. After imaging, tissue was registered with microinjections of dye, under visible light laser guidance, followed by routine histologic processing to confirm the identity of microstructure. Results: The 16 ± 1 μm resolution allowed subsurface microstructure to be identified at unprecedented reso lution. Structures identified included fascicles of pe ripheral nerves, the internal elastic membrane of mi crovessels, and the granular layer of the cerebellum. Conclusions: The ability of OCT to provide micrometer-scale definition of tissue microstructure suggests a role in surgical diagnostics. Future in vivo investiga tions are merited to establish its utility for morbidity reduction associated with surgical intervention.

Original languageEnglish (US)
Pages (from-to)32-40
Number of pages9
JournalJournal of Surgical Research
Issue number1
StatePublished - Jul 15 1997
Externally publishedYes

ASJC Scopus subject areas

  • Surgery


Dive into the research topics of 'Optical biopsy with optical coherence tomography: Feasibility for surgical diagnostics'. Together they form a unique fingerprint.

Cite this