OpenPI-C: A Better Benchmark and Stronger Baseline for Open-Vocabulary State Tracking

Xueqing Wu, Sha Li, Heng Ji

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Open-vocabulary state tracking is a more practical version of state tracking that aims to track state changes of entities throughout a process without restricting the state space and entity space. OpenPI (Tandon et al., 2020) is to date the only dataset annotated for open-vocabulary state tracking. However, we identify issues with the dataset quality and evaluation metric. For the dataset, we categorize 3 types of problems on the procedure level, step level and state change level respectively, and build a clean dataset OpenPI-C using multiple rounds of human judgment. For the evaluation metric, we propose a cluster-based metric to fix the original metric's preference for repetition. Model-wise, we enhance the seq2seq generation baseline by reinstating two key properties for state tracking: temporal dependency and entity awareness. The state of the world after an action is inherently dependent on the previous state. We model this dependency through a dynamic memory bank and allow the model to attend to the memory slots during decoding. On the other hand, the state of the world is naturally a union of the states of involved entities. Since the entities are unknown in the open-vocabulary setting, we propose a two-stage model that refines the state change prediction conditioned on entities predicted from the first stage. Empirical results show the effectiveness of our proposed model especially on the cluster-based metric. The code and data are released at https://github.com/shirley-wu/openpi-c.

Original languageEnglish (US)
Title of host publicationFindings of the Association for Computational Linguistics, ACL 2023
PublisherAssociation for Computational Linguistics (ACL)
Pages7213-7222
Number of pages10
ISBN (Electronic)9781959429623
DOIs
StatePublished - 2023
EventFindings of the Association for Computational Linguistics, ACL 2023 - Toronto, Canada
Duration: Jul 9 2023Jul 14 2023

Publication series

NameProceedings of the Annual Meeting of the Association for Computational Linguistics
ISSN (Print)0736-587X

Conference

ConferenceFindings of the Association for Computational Linguistics, ACL 2023
Country/TerritoryCanada
CityToronto
Period7/9/237/14/23

ASJC Scopus subject areas

  • Computer Science Applications
  • Linguistics and Language
  • Language and Linguistics

Fingerprint

Dive into the research topics of 'OpenPI-C: A Better Benchmark and Stronger Baseline for Open-Vocabulary State Tracking'. Together they form a unique fingerprint.

Cite this