OntoType: Ontology-Guided and Pre-Trained Language Model Assisted Fine-Grained Entity Typing

Tanay Komarlu, Minhao Jiang, Xuan Wang, Jiawei Han

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Fine-grained entity typing (FET), which assigns entities in text with context-sensitive, fine-grained semantic types, is a basic but important task for knowledge extraction from unstructured text. FET has been studied extensively in natural language processing and typically relies on human-annotated corpora for training, which is costly and difficult to scale. Recent studies explore the utilization of pre-trained language models (PLMs) as a knowledge base to generate rich and context-aware weak supervision for FET. However, a PLM still requires direction and guidance to serve as a knowledge base as they often generate a mixture of rough and fine-grained types, or tokens unsuitable for typing. In this study, we vision that an ontology provides a semantics-rich, hierarchical structure, which will help select the best results generated by multiple PLM models and head words. Specifically, we propose a novel annotation-free, ontology-guided FET method, OntoType, which follows a type ontological structure, from coarse to fine, ensembles multiple PLM prompting results to generate a set of type candidates, and refines its type resolution, under the local context with a natural language inference model. Our experiments on the Ontonotes, FIGER, and NYT datasets using their associated ontological structures demonstrate that our method outperforms the state-of-the-art zero-shot fine-grained entity typing methods as well as a typical LLM method, ChatGPT. Our error analysis shows that refinement of the existing ontology structures will further improve fine-grained entity typing.

Original languageEnglish (US)
Title of host publicationKDD 2024 - Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
PublisherAssociation for Computing Machinery
Pages1407-1417
Number of pages11
ISBN (Electronic)9798400704901
DOIs
StatePublished - Aug 24 2024
Event30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2024 - Barcelona, Spain
Duration: Aug 25 2024Aug 29 2024

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
ISSN (Print)2154-817X

Conference

Conference30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2024
Country/TerritorySpain
CityBarcelona
Period8/25/248/29/24

Keywords

  • fine-grained entity typing
  • masked language model prompting
  • natural language understanding
  • zero-shot entity typing

ASJC Scopus subject areas

  • Software
  • Information Systems

Fingerprint

Dive into the research topics of 'OntoType: Ontology-Guided and Pre-Trained Language Model Assisted Fine-Grained Entity Typing'. Together they form a unique fingerprint.

Cite this