Abstract
This paper considers online switching control with a finite candidate controller pool, an unknown dynamical system, and unknown cost functions. The candidate controllers can be unstabilizing policies. We only require at least one candidate controller to satisfy certain stability properties, but we do not know which one is stabilizing. We design an online algorithm that guarantees finite-gain stability throughout the duration of its execution. We also provide a sublinear policy regret guarantee compared with the optimal stabilizing candidate controller. Lastly, we numerically test our algorithm on quadrotor planar flights and compare it with a classical switching control algorithm, falsification-based switching, and a classical multi-armed bandit algorithm, Exp3 with batches.
Original language | English (US) |
---|---|
Pages (from-to) | 1138-1151 |
Number of pages | 14 |
Journal | Proceedings of Machine Learning Research |
Volume | 211 |
State | Published - 2023 |
Event | 5th Annual Conference on Learning for Dynamics and Control, L4DC 2023 - Philadelphia, United States Duration: Jun 15 2023 → Jun 16 2023 |
ASJC Scopus subject areas
- Artificial Intelligence
- Software
- Control and Systems Engineering
- Statistics and Probability