Online Optimal Control with Affine Constraints

Yingying Li, Subhro Das, Na Li

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper considers online optimal control with affine constraints on the states and actions under linear dynamics with bounded random disturbances. The system dynamics and constraints are assumed to be known and time invariant but the convex stage cost functions change adversarially. To solve this problem, we propose Online Gradient Descent with Buffer Zones (OGD-BZ). Theoretically, we show that OGD-BZ with proper parameters can guarantee the system to satisfy all the constraints despite any admissible disturbances. Further, we investigate the policy regret of OGD-BZ, which compares OGD-BZ’s performance with the performance of the optimal linear policy in hindsight. We show that OGD-BZ can achieve a policy regret upper bound that is square root of the horizon length multiplied by some logarithmic terms of the horizon length under proper algorithm parameters.

Original languageEnglish (US)
Title of host publication35th AAAI Conference on Artificial Intelligence, AAAI 2021
PublisherAssociation for the Advancement of Artificial Intelligence
Pages8527-8537
Number of pages11
ISBN (Electronic)9781713835974
StatePublished - 2021
Externally publishedYes
Event35th AAAI Conference on Artificial Intelligence, AAAI 2021 - Virtual, Online
Duration: Feb 2 2021Feb 9 2021

Publication series

Name35th AAAI Conference on Artificial Intelligence, AAAI 2021
Volume10A

Conference

Conference35th AAAI Conference on Artificial Intelligence, AAAI 2021
CityVirtual, Online
Period2/2/212/9/21

ASJC Scopus subject areas

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Online Optimal Control with Affine Constraints'. Together they form a unique fingerprint.

Cite this