Online latent structure training for language acquisition

Michael Connor, Cynthia Fisher, Dan Roth

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

A fundamental step in sentence comprehension involves assigning semantic roles to sentence constituents. To accomplish this, the listener must parse the sentence, find constituents that are candidate arguments, and assign semantic roles to those constituents. Where do children learning their first languages begin in solving this problem? Even assuming children can derive a rough meaning for the sentence from the situation, how do they begin to map this meaning to the structure and the structure to the form of the sentence? In this paper we use feedback from a semantic role labeling (SRL) task to improve the intermediate syntactic representations that feed the SRL. We accomplish this by training an intermediate classifier using signals derived from latent structure optimization techniques. By using a separate classifier to predict internal structure we see benefits due to knowledge embedded in the classifier's feature representation. This extra structure allows the system to begin to learn using weaker, more plausible semantic feedback.

Original languageEnglish (US)
Title of host publicationIJCAI 2011 - 22nd International Joint Conference on Artificial Intelligence
Pages1782-1787
Number of pages6
DOIs
StatePublished - Dec 1 2011
Event22nd International Joint Conference on Artificial Intelligence, IJCAI 2011 - Barcelona, Catalonia, Spain
Duration: Jul 16 2011Jul 22 2011

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
ISSN (Print)1045-0823

Other

Other22nd International Joint Conference on Artificial Intelligence, IJCAI 2011
CountrySpain
CityBarcelona, Catalonia
Period7/16/117/22/11

ASJC Scopus subject areas

  • Artificial Intelligence

Fingerprint Dive into the research topics of 'Online latent structure training for language acquisition'. Together they form a unique fingerprint.

Cite this