Online and distributed Bayesian moment matching for parameter learning in sum-product networks

Abdullah Rashwan, Han Zhao, Pascal Poupart

Research output: Contribution to conferencePaperpeer-review

Abstract

Probabilistic graphical models provide a general and flexible framework for reasoning about complex dependencies in noisy domains with many variables. Among the various types of probabilistic graphical models, sum-product networks (SPNs) have recently generated some interest because exact inference can always be done in linear time with respect to the size of the network. This is particularly attractive since it means that learning an SPN from data always yields a tractable model for inference. However, existing parameter learning algorithms for SPNs operate in batch mode and do not scale easily to large datasets. In this work, we explore online algorithms to ensure that parameter learning can also be done tractably with respect to the amount of data. More specifically, we propose a new Bayesian moment matching (BMM) algorithm that operates naturally in an online fashion and that can be easily distributed. We demonstrate the effectiveness and scalability of BMM in comparison to online extensions of gradient descent, exponentiated gradient and expectation maximization on 20 classic benchmarks and 4 large scale datasets.

Original languageEnglish (US)
Pages1469-1477
Number of pages9
StatePublished - 2016
Externally publishedYes
Event19th International Conference on Artificial Intelligence and Statistics, AISTATS 2016 - Cadiz, Spain
Duration: May 9 2016May 11 2016

Conference

Conference19th International Conference on Artificial Intelligence and Statistics, AISTATS 2016
Country/TerritorySpain
CityCadiz
Period5/9/165/11/16

ASJC Scopus subject areas

  • Artificial Intelligence
  • Statistics and Probability

Fingerprint

Dive into the research topics of 'Online and distributed Bayesian moment matching for parameter learning in sum-product networks'. Together they form a unique fingerprint.

Cite this