TY - GEN
T1 - Online advertisement, optimization and stochastic networks
AU - Tan, Bo
AU - Srikant, R.
PY - 2011
Y1 - 2011
N2 - In this paper, we propose a stochastic model to describe how search service providers charge client companies based on users' queries for the keywords related to these companies' ads by using certain advertisement assignment strategies. We formulate an optimization problem to maximize the long-term average revenue for the service provider under each client's long-term average budget constraint, and design an online algorithm which captures the stochastic properties of users' queries and click-through behaviors. We solve the optimization problem by making connections to scheduling problems in wireless networks, queueing theory and stochastic networks. Unlike prior models, we do not assume that the number of query arrivals is known. Due to the stochastic nature of the arrival process considered here, either temporary "free" service, i.e., service above the specified budget (which we call "overdraft") or under-utilization of the budget (which we call "underdraft") is unavoidable. We prove that our online algorithm can achieve a revenue that is within O(ε) of the optimal revenue while ensuring that the overdraft or underdraft is O(1/ε), where ε can be arbitrarily small. With a view towards practice, we also show that one can always operate strictly under the budget. Our algorithm also allows us to quantify the effect of errors in click-through rate estimation on the achieved revenue. We show that we lose at most δ over 1+δ fraction of the revenue if δ is the relative error in click-through rate estimation.
AB - In this paper, we propose a stochastic model to describe how search service providers charge client companies based on users' queries for the keywords related to these companies' ads by using certain advertisement assignment strategies. We formulate an optimization problem to maximize the long-term average revenue for the service provider under each client's long-term average budget constraint, and design an online algorithm which captures the stochastic properties of users' queries and click-through behaviors. We solve the optimization problem by making connections to scheduling problems in wireless networks, queueing theory and stochastic networks. Unlike prior models, we do not assume that the number of query arrivals is known. Due to the stochastic nature of the arrival process considered here, either temporary "free" service, i.e., service above the specified budget (which we call "overdraft") or under-utilization of the budget (which we call "underdraft") is unavoidable. We prove that our online algorithm can achieve a revenue that is within O(ε) of the optimal revenue while ensuring that the overdraft or underdraft is O(1/ε), where ε can be arbitrarily small. With a view towards practice, we also show that one can always operate strictly under the budget. Our algorithm also allows us to quantify the effect of errors in click-through rate estimation on the achieved revenue. We show that we lose at most δ over 1+δ fraction of the revenue if δ is the relative error in click-through rate estimation.
UR - http://www.scopus.com/inward/record.url?scp=84860692655&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84860692655&partnerID=8YFLogxK
U2 - 10.1109/CDC.2011.6161009
DO - 10.1109/CDC.2011.6161009
M3 - Conference contribution
AN - SCOPUS:84860692655
SN - 9781612848006
T3 - Proceedings of the IEEE Conference on Decision and Control
SP - 4504
EP - 4509
BT - 2011 50th IEEE Conference on Decision and Control and European Control Conference, CDC-ECC 2011
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2011 50th IEEE Conference on Decision and Control and European Control Conference, CDC-ECC 2011
Y2 - 12 December 2011 through 15 December 2011
ER -