One step lithography-less silicon nanomanufacturing for low cost high-efficiency solar cell production

Yi Chen, Logan Liu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

To improve light absorption, previously various antireflection material layers were created on solar wafer surface including multilayer dielectric film, nanoparticle sludges, microtextures, noble metal plasmonic nanoparticles and 3D silicon nanostructure arrays. All of these approaches involve nanoscale prepatterning, surface-area-sensitive assembly processes or extreme fabrication conditions; therefore, they are often limited by the associated high cost and low yield as well as the consequent industry incompatibility. In comparison, our nanomanufacturing, an unique synchronized and simultaneous top-down and bottom-up nanofabrication approach called simultaneous plasma enhanced reactive ion synthesis and etching (SPERISE), offers a better antireflection solution along with the potential to increase p-n junction surface area. High density and high aspect ratio anechoic nanocone arrays are repeatedly and reliably created on the entire surface of single and poly crystalline silicon wafers as well as amorphous silicon thin films within 5 minutes under room temperature. The nanocone surface had lower than 5% reflection over the entire solar spectrum and a desirable omnidirectional absorption property. Using the nanotextured solar wafer, a 156mm × 156mm 18.1%-efficient black silicon solar cell was fabricated, which was an 18.3% enhancement over the cell fabricated by standard industrial processes. This process also reduces silicon loss during the texturing step and enables tighter process control by creating more uniform surface structures. Considering all the above advantages, the demonstrated nanomanufacturing process can be readily translated into current industrial silicon solar cell fabrication lines to replace the costly and ineffective wet chemical texturing and antireflective coatings.

Original languageEnglish (US)
Title of host publicationAdvanced Fabrication Technologies for Micro/Nano Optics and Photonics VII
PublisherSPIE
ISBN (Print)9780819498878
DOIs
StatePublished - Jan 1 2014
EventAdvanced Fabrication Technologies for Micro/Nano Optics and Photonics VII - San Francisco, CA, United States
Duration: Feb 3 2014Feb 5 2014

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume8974
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Other

OtherAdvanced Fabrication Technologies for Micro/Nano Optics and Photonics VII
CountryUnited States
CitySan Francisco, CA
Period2/3/142/5/14

Keywords

  • Antireflection
  • Black silicon
  • Nanomanufacturing
  • One-dimensional nanostructures
  • Plasma-assisted nucleation
  • Reactive ion etching
  • Solar cell

ASJC Scopus subject areas

  • Applied Mathematics
  • Computer Science Applications
  • Electrical and Electronic Engineering
  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'One step lithography-less silicon nanomanufacturing for low cost high-efficiency solar cell production'. Together they form a unique fingerprint.

Cite this