TY - JOUR
T1 - On topological centre problems and SIN quantum groups
AU - Hu, Zhiguo
AU - Neufang, Matthias
AU - Ruan, Zhong Jin
N1 - \u2729 The first and the second authors were partially supported by NSERC. The third author was partially supported by the National Science Foundation DMS-0500535. * Corresponding author. E-mail addresses: [email protected] (Z. Hu), [email protected] (M. Neufang), [email protected] (Z.-J. Ruan).
PY - 2009/7/15
Y1 - 2009/7/15
N2 - Let A be a Banach algebra with a faithful multiplication and 〈 A* A 〉* be the quotient Banach algebra of A* * with the left Arens product. We introduce a natural Banach algebra, which is a closed subspace of 〈 A* A 〉* but equipped with a distinct multiplication. With the help of this Banach algebra, new characterizations of the topological centre Zt (〈 A* A 〉*) of 〈 A* A 〉* are obtained, and a characterization of Zt (〈 A* A 〉*) by Lau and Ülger for A having a bounded approximate identity is extended to all Banach algebras. The study of this Banach algebra motivates us to introduce the notion of SIN locally compact quantum groups and the concept of quotient strong Arens irregularity. We give characterizations of co-amenable SIN quantum groups, which are even new for locally compact groups. Our study shows that the SIN property is intrinsically related to topological centre problems. We also give characterizations of quotient strong Arens irregularity for all quantum group algebras. Within the class of Banach algebras introduced recently by the authors, we characterize the unital ones, generalizing the corresponding result of Lau and Ülger. We study the interrelationships between strong Arens irregularity and quotient strong Arens irregularity, revealing the complex nature of topological centre problems. Some open questions by Lau and Ülger on Zt (〈 A* A 〉*) are also answered.
AB - Let A be a Banach algebra with a faithful multiplication and 〈 A* A 〉* be the quotient Banach algebra of A* * with the left Arens product. We introduce a natural Banach algebra, which is a closed subspace of 〈 A* A 〉* but equipped with a distinct multiplication. With the help of this Banach algebra, new characterizations of the topological centre Zt (〈 A* A 〉*) of 〈 A* A 〉* are obtained, and a characterization of Zt (〈 A* A 〉*) by Lau and Ülger for A having a bounded approximate identity is extended to all Banach algebras. The study of this Banach algebra motivates us to introduce the notion of SIN locally compact quantum groups and the concept of quotient strong Arens irregularity. We give characterizations of co-amenable SIN quantum groups, which are even new for locally compact groups. Our study shows that the SIN property is intrinsically related to topological centre problems. We also give characterizations of quotient strong Arens irregularity for all quantum group algebras. Within the class of Banach algebras introduced recently by the authors, we characterize the unital ones, generalizing the corresponding result of Lau and Ülger. We study the interrelationships between strong Arens irregularity and quotient strong Arens irregularity, revealing the complex nature of topological centre problems. Some open questions by Lau and Ülger on Zt (〈 A* A 〉*) are also answered.
KW - Banach algebras
KW - Locally compact groups and quantum groups
KW - Topological centres
UR - http://www.scopus.com/inward/record.url?scp=67349215774&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=67349215774&partnerID=8YFLogxK
U2 - 10.1016/j.jfa.2009.02.004
DO - 10.1016/j.jfa.2009.02.004
M3 - Article
AN - SCOPUS:67349215774
SN - 0022-1236
VL - 257
SP - 610
EP - 640
JO - Journal of Functional Analysis
JF - Journal of Functional Analysis
IS - 2
ER -