TY - JOUR

T1 - On the set multicover problem in geometric settings

AU - Chekuri, Chandra

AU - Clarkson, Kenneth L.

AU - Har-Peled, Sariel

PY - 2012/12

Y1 - 2012/12

N2 - We consider the set multicover problem in geometric settings. Given a set of points P and a collection of geometric shapes (or sets) F, we wish to find a minimum cardinality subset of F such that each point p ∈ P is covered by (contained in) at least d(p) sets. Here, d(p) is an integer demand (requirement) for p. When the demands d(p) = 1 for all p, this is the standard set cover problem. The set cover problem in geometric settings admits an approximation ratio that is better than that for the general version. In this article, we show that similar improvements can be obtained for the multicover problem as well. In particular, we obtain an O(log opt) approximation for set systems of bounded VC-dimension, and an O(1) approximation for covering points by half-spaces in three dimensions and for some other classes of shapes.

AB - We consider the set multicover problem in geometric settings. Given a set of points P and a collection of geometric shapes (or sets) F, we wish to find a minimum cardinality subset of F such that each point p ∈ P is covered by (contained in) at least d(p) sets. Here, d(p) is an integer demand (requirement) for p. When the demands d(p) = 1 for all p, this is the standard set cover problem. The set cover problem in geometric settings admits an approximation ratio that is better than that for the general version. In this article, we show that similar improvements can be obtained for the multicover problem as well. In particular, we obtain an O(log opt) approximation for set systems of bounded VC-dimension, and an O(1) approximation for covering points by half-spaces in three dimensions and for some other classes of shapes.

UR - http://www.scopus.com/inward/record.url?scp=84872482196&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84872482196&partnerID=8YFLogxK

U2 - 10.1145/2390176.2390185

DO - 10.1145/2390176.2390185

M3 - Article

AN - SCOPUS:84872482196

SN - 1549-6325

VL - 9

JO - ACM Transactions on Algorithms

JF - ACM Transactions on Algorithms

IS - 1

M1 - 9

ER -