TY - JOUR
T1 - On the Separation of Correlation-Assisted Sum Capacities of Multiple Access Channels
AU - Seshadri, Akshay
AU - Leditzky, Felix
AU - Siddhu, Vikesh
AU - Smith, Graeme
N1 - This work was supported in part by NSF Grant CCF 1652560, in part by NSF Grant Physics (PHY) 1915407, in part by NSF Quantum Interconnect Challenges for Transformational Advances in Quantum Systems (QuIC-TAQS) under Grant 2137984, and in part by NSF QuIC-TAQS under Grant 2137953.
PY - 2023/9/1
Y1 - 2023/9/1
N2 - The capacity of a channel characterizes the maximum rate at which information can be transmitted through the channel asymptotically faithfully. For a channel with multiple senders and a single receiver, computing its sum capacity is possible in theory, but challenging in practice because of the nonconvex optimization involved. To address this challenge, we investigate three topics in our study. In the first part, we study the sum capacity of a family of multiple access channels (MACs) obtained from nonlocal games. For any MAC in this family, we obtain an upper bound on the sum rate that depends only on the properties of the game when allowing assistance from an arbitrary set of correlations between the senders. This approach can be used to prove separations between sum capacities when the senders are allowed to share different sets of correlations, such as classical, quantum or no-signalling correlations. We also construct a specific nonlocal game to show that the approach of bounding the sum capacity by relaxing the nonconvex optimization can give arbitrarily loose bounds. Owing to this result, in the second part, we study algorithms for non-convex optimization of a class of functions we call Lipschitz-like functions. This class includes entropic quantities, and hence these results may be of independent interest in information theory. Subsequently, in the third part, we show that one can use these techniques to compute the sum capacity of an arbitrary two-sender MACs to a fixed additive precision in quasi-polynomial time. We showcase our method by efficiently computing the sum capacity of a family of two-sender MACs for which one of the input alphabets has size two. Furthermore, we demonstrate with an example that our algorithm may compute the sum capacity to a higher precision than using the convex relaxation.
AB - The capacity of a channel characterizes the maximum rate at which information can be transmitted through the channel asymptotically faithfully. For a channel with multiple senders and a single receiver, computing its sum capacity is possible in theory, but challenging in practice because of the nonconvex optimization involved. To address this challenge, we investigate three topics in our study. In the first part, we study the sum capacity of a family of multiple access channels (MACs) obtained from nonlocal games. For any MAC in this family, we obtain an upper bound on the sum rate that depends only on the properties of the game when allowing assistance from an arbitrary set of correlations between the senders. This approach can be used to prove separations between sum capacities when the senders are allowed to share different sets of correlations, such as classical, quantum or no-signalling correlations. We also construct a specific nonlocal game to show that the approach of bounding the sum capacity by relaxing the nonconvex optimization can give arbitrarily loose bounds. Owing to this result, in the second part, we study algorithms for non-convex optimization of a class of functions we call Lipschitz-like functions. This class includes entropic quantities, and hence these results may be of independent interest in information theory. Subsequently, in the third part, we show that one can use these techniques to compute the sum capacity of an arbitrary two-sender MACs to a fixed additive precision in quasi-polynomial time. We showcase our method by efficiently computing the sum capacity of a family of two-sender MACs for which one of the input alphabets has size two. Furthermore, we demonstrate with an example that our algorithm may compute the sum capacity to a higher precision than using the convex relaxation.
KW - Channel capacity
KW - multiuser channels
KW - optimization
KW - quantum entanglement
KW - quantum information science
UR - http://www.scopus.com/inward/record.url?scp=85162897492&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85162897492&partnerID=8YFLogxK
U2 - 10.1109/TIT.2023.3274434
DO - 10.1109/TIT.2023.3274434
M3 - Article
AN - SCOPUS:85162897492
SN - 0018-9448
VL - 69
SP - 5805
EP - 5844
JO - IEEE Transactions on Information Theory
JF - IEEE Transactions on Information Theory
IS - 9
ER -