On the relationship between sum-product networks and Bayesian networks

Han Zhao, Mazen Melibari, Pascal Poupart

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this paper, we establish some theoretical connections between Sum-Product Networks (SPNs) and Bayesian Networks (BNs). We prove that every SPN can be converted into a BN in linear time and space in terms of the network size. The key insight is to use Algebraic Decision Diagrams (ADDs) to compactly represent the local conditional probability distributions at each node in the resulting BN by exploiting context-specific independence (CSI). The generated BN has a simple directed bipartite graphical structure. We show that by applying the Variable Elimination algorithm (VE) to the generated BN with ADD representations, we can recover the original SPN where the SPN can be viewed as a history record or caching of the VE inference process. To help state the proof clearly, we introduce the notion of normal SPN and present a theoretical analysis of the consistency and decomposability properties. We conclude the paper with some discussion of the implications of the proof and establish a connection between the depth of an SPN and a lower bound of the tree-width of its corresponding BN.

Original languageEnglish (US)
Title of host publication32nd International Conference on Machine Learning, ICML 2015
EditorsFrancis Bach, David Blei
PublisherInternational Machine Learning Society (IMLS)
Pages116-124
Number of pages9
ISBN (Electronic)9781510810587
StatePublished - 2015
Externally publishedYes
Event32nd International Conference on Machine Learning, ICML 2015 - Lile, France
Duration: Jul 6 2015Jul 11 2015

Publication series

Name32nd International Conference on Machine Learning, ICML 2015
Volume1

Other

Other32nd International Conference on Machine Learning, ICML 2015
Country/TerritoryFrance
CityLile
Period7/6/157/11/15

ASJC Scopus subject areas

  • Human-Computer Interaction
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'On the relationship between sum-product networks and Bayesian networks'. Together they form a unique fingerprint.

Cite this