Abstract
Ytterbium (Yb) doped silica fibers are widely used in high power fiber lasers where co-doping the silica core material with other elements is pivotal for high efficiency, lowdetrimental effects, and reliable optical properties. Aluminum (Al) is one of the most preferred co-dopants, yet, purely Yb/Al-doped silica fibers suffer from relatively high levels of photodarkening (PD) when used in laser applications. A slightly improved PD-resistance has been reported for increasing Al-doping concentration. However, the source of this improved performance is still unknown. In this article, we present the origin of the improved PD-resistance observed in Yb-doped silica fibers with high Al-concentration. It is found that a high Al-co-doping concentration reduces the interaction strength between the Yb-ion and nearby oxygen ions, resulting in a significant PD-resistance with negligible induced loss in the entire visible spectral range. A negligible PD is observed even for significantly higher Yb-concentrations than commonly used in commercially available Yb-doped silica fibers.
Original language | English (US) |
---|---|
Pages (from-to) | 115-126 |
Number of pages | 12 |
Journal | Optical Materials Express |
Volume | 11 |
Issue number | 1 |
DOIs | |
State | Published - Jan 2020 |
Externally published | Yes |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials