On the monotonicity of a function related to the local time of a symmetric Lévy process

Renming Song, Zoran Vondraček

Research output: Contribution to journalArticlepeer-review

Abstract

Let ψ be the characteristic exponent of a symmetric Lévy process X. The functionh (x) = frac(2, π) ∫0 frac(1 - cos (λ x), ψ (λ)) d λappears in various studies on the local time of X. We study monotonicity properties of the function h. In case when X is a subordinate Brownian motion, we show that x {mapping} h (sqrt(x)) is a Bernstein function.

Original languageEnglish (US)
Pages (from-to)1522-1528
Number of pages7
JournalStatistics and Probability Letters
Volume76
Issue number14
DOIs
StatePublished - Aug 1 2006

Keywords

  • Bernstein function
  • Local time
  • Lévy processes
  • Subordinate Brownian motion

ASJC Scopus subject areas

  • Statistics and Probability
  • Statistics, Probability and Uncertainty

Fingerprint

Dive into the research topics of 'On the monotonicity of a function related to the local time of a symmetric Lévy process'. Together they form a unique fingerprint.

Cite this