TY - GEN
T1 - On the memorability of system-generated PINs
T2 - 11th Symposium on Usable Privacy and Security, SOUPS 2015
AU - Huh, Jun Ho
AU - Kim, Hyoungschick
AU - Bobba, Rakesh B.
AU - Bashir, Masooda N.
AU - Beznosov, Konstantin
N1 - Publisher Copyright:
© 2015 by The USENIX Association.
PY - 2019
Y1 - 2019
N2 - To ensure that users do not choose weak personal identification numbers (PINs), many banks give out system-generated random PINs. 4-digit is the most commonly used PIN length, but 6-digit system-generated PINs are also becoming popular. The increased security we get from using system-generated PINs, however, comes at the cost of memorability. And while banks are increasingly adopting system-generated PINs, the impact on memorability of such PINs has not been studied. We conducted a large-scale online user study with 9,114 participants to investigate the impact of increased PIN length on the memorability of PINs, and whether number chunking1 techniques (breaking a single number into multiple smaller numbers) can be applied to improve memorability for larger PIN lengths. As one would expect, our study shows that system-generated 4-digit PINs outperform 6-, 7-, and 8-digit PINs in long-term memorability. Interestingly, however, we find that there is no statistically significant difference in memorability between 6-, 7-, and 8-digit PINs, indicating that 7-, and 8-digit PINs should also be considered when looking to increase PIN length to 6-digits from currently common length of 4-digits for improved security. By grouping all 6-, 7-, and 8-digit chunked PINs together, and comparing them against a group of all non-chunked PINs, we find that chunking, overall, improves memorability of system-generated PINs. To our surprise, however, none of the individual chunking policies (e.g., 0000-00-00) showed statistically significant improvement over their peer non-chunked policies (e.g., 00000000), indicating that chunking may only have a limited impact. Interestingly, the top performing 8-digit chunking policy did show noticeable and statistically significant improvement in memorability over shorter 7-digit PINs, indicating that while chunking has the potential to improve memorability, more studies are needed to understand the contexts in which that potential can be realized.
AB - To ensure that users do not choose weak personal identification numbers (PINs), many banks give out system-generated random PINs. 4-digit is the most commonly used PIN length, but 6-digit system-generated PINs are also becoming popular. The increased security we get from using system-generated PINs, however, comes at the cost of memorability. And while banks are increasingly adopting system-generated PINs, the impact on memorability of such PINs has not been studied. We conducted a large-scale online user study with 9,114 participants to investigate the impact of increased PIN length on the memorability of PINs, and whether number chunking1 techniques (breaking a single number into multiple smaller numbers) can be applied to improve memorability for larger PIN lengths. As one would expect, our study shows that system-generated 4-digit PINs outperform 6-, 7-, and 8-digit PINs in long-term memorability. Interestingly, however, we find that there is no statistically significant difference in memorability between 6-, 7-, and 8-digit PINs, indicating that 7-, and 8-digit PINs should also be considered when looking to increase PIN length to 6-digits from currently common length of 4-digits for improved security. By grouping all 6-, 7-, and 8-digit chunked PINs together, and comparing them against a group of all non-chunked PINs, we find that chunking, overall, improves memorability of system-generated PINs. To our surprise, however, none of the individual chunking policies (e.g., 0000-00-00) showed statistically significant improvement over their peer non-chunked policies (e.g., 00000000), indicating that chunking may only have a limited impact. Interestingly, the top performing 8-digit chunking policy did show noticeable and statistically significant improvement in memorability over shorter 7-digit PINs, indicating that while chunking has the potential to improve memorability, more studies are needed to understand the contexts in which that potential can be realized.
KW - Chunking
KW - PINs
KW - Passwords
KW - Policy
KW - Security
KW - Usability
UR - http://www.scopus.com/inward/record.url?scp=85075913884&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85075913884&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85075913884
T3 - SOUPS 2015 - Proceedings of the 11th Symposium on Usable Privacy and Security
SP - 197
EP - 209
BT - SOUPS 2015 - Proceedings of the 11th Symposium on Usable Privacy and Security
PB - USENIX Association
Y2 - 22 July 2015 through 24 July 2015
ER -