TY - GEN
T1 - On the Importance of Distractors for Few-Shot Classification
AU - Das, Rajshekhar
AU - Wang, Yu Xiong
AU - Moura, José M.F.
N1 - Publisher Copyright:
© 2021 IEEE
PY - 2021
Y1 - 2021
N2 - Few-shot classification aims at classifying categories of a novel task by learning from just a few (typically, 1 to 5) labelled examples. An effective approach to few-shot classification involves a prior model trained on a large-sample base domain, which is then finetuned over the novel few-shot task to yield generalizable representations. However, task-specific finetuning is prone to overfitting due to the lack of enough training examples. To alleviate this issue, we propose a new finetuning approach based on contrastive learning that reuses unlabelled examples from the base domain in the form of distractors. Unlike the nature of unlabelled data used in prior works, distractors belong to classes that do not overlap with the novel categories. We demonstrate for the first time that inclusion of such distractors can significantly boost few-shot generalization. Our technical novelty includes a stochastic pairing of examples sharing the same category in the few-shot task and a weighting term that controls the relative influence of task-specific negatives and distractors. An important aspect of our finetuning objective is that it is agnostic to distractor labels and hence applicable to various base domain settings. More precisely, compared to state-of-the-art approaches, our method shows accuracy gains of up to 12% in cross-domain and up to 5% in unsupervised prior-learning settings. Our code is available at https://github.com/quantacode/Contrastive-Finetuning.git.
AB - Few-shot classification aims at classifying categories of a novel task by learning from just a few (typically, 1 to 5) labelled examples. An effective approach to few-shot classification involves a prior model trained on a large-sample base domain, which is then finetuned over the novel few-shot task to yield generalizable representations. However, task-specific finetuning is prone to overfitting due to the lack of enough training examples. To alleviate this issue, we propose a new finetuning approach based on contrastive learning that reuses unlabelled examples from the base domain in the form of distractors. Unlike the nature of unlabelled data used in prior works, distractors belong to classes that do not overlap with the novel categories. We demonstrate for the first time that inclusion of such distractors can significantly boost few-shot generalization. Our technical novelty includes a stochastic pairing of examples sharing the same category in the few-shot task and a weighting term that controls the relative influence of task-specific negatives and distractors. An important aspect of our finetuning objective is that it is agnostic to distractor labels and hence applicable to various base domain settings. More precisely, compared to state-of-the-art approaches, our method shows accuracy gains of up to 12% in cross-domain and up to 5% in unsupervised prior-learning settings. Our code is available at https://github.com/quantacode/Contrastive-Finetuning.git.
UR - http://www.scopus.com/inward/record.url?scp=85127736951&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85127736951&partnerID=8YFLogxK
U2 - 10.1109/ICCV48922.2021.00890
DO - 10.1109/ICCV48922.2021.00890
M3 - Conference contribution
AN - SCOPUS:85127736951
T3 - Proceedings of the IEEE International Conference on Computer Vision
SP - 9010
EP - 9020
BT - Proceedings - 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 18th IEEE/CVF International Conference on Computer Vision, ICCV 2021
Y2 - 11 October 2021 through 17 October 2021
ER -