TY - JOUR
T1 - On the Curses of Future and History in Future-dependent Value Functions for OPE
AU - Zhang, Yuheng
AU - Jiang, Nan
N1 - Nan Jiang acknowledges funding support from NSF IIS-2112471, NSF CAREER IIS-2141781, Google Scholar Award, and Sloan Fellowship.
PY - 2024
Y1 - 2024
N2 - We study off-policy evaluation (OPE) in partially observable environments with complex observations, with the goal of developing estimators whose guarantee avoids exponential dependence on the horizon. While such estimators exist for MDPs and POMDPs can be converted to history-based MDPs, their estimation errors depend on the state-density ratio for MDPs which becomes history ratios after conversion, an exponential object. Recently, Uehara et al. [2022a] proposed future-dependent value functions as a promising framework to address this issue, where the guarantee for memoryless policies depends on the density ratio over the latent state space. However, it also depends on the boundedness of the future-dependent value function and other related quantities, which we show could be exponential-in-length and thus erasing the advantage of the method. In this paper, we discover novel coverage assumptions tailored to the structure of POMDPs, such as outcome coverage and belief coverage, which enable polynomial bounds on the aforementioned quantities. As a side product, our analyses also lead to the discovery of new algorithms with complementary properties.
AB - We study off-policy evaluation (OPE) in partially observable environments with complex observations, with the goal of developing estimators whose guarantee avoids exponential dependence on the horizon. While such estimators exist for MDPs and POMDPs can be converted to history-based MDPs, their estimation errors depend on the state-density ratio for MDPs which becomes history ratios after conversion, an exponential object. Recently, Uehara et al. [2022a] proposed future-dependent value functions as a promising framework to address this issue, where the guarantee for memoryless policies depends on the density ratio over the latent state space. However, it also depends on the boundedness of the future-dependent value function and other related quantities, which we show could be exponential-in-length and thus erasing the advantage of the method. In this paper, we discover novel coverage assumptions tailored to the structure of POMDPs, such as outcome coverage and belief coverage, which enable polynomial bounds on the aforementioned quantities. As a side product, our analyses also lead to the discovery of new algorithms with complementary properties.
UR - http://www.scopus.com/inward/record.url?scp=105000518779&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=105000518779&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:105000518779
SN - 1049-5258
VL - 37
JO - Advances in Neural Information Processing Systems
JF - Advances in Neural Information Processing Systems
T2 - 38th Conference on Neural Information Processing Systems, NeurIPS 2024
Y2 - 9 December 2024 through 15 December 2024
ER -