On the complexity of stream equality

Jörg Endrullis, Dimitri Hendriks, Rena Bakhshi, Grigore Roşu

Research output: Contribution to journalArticlepeer-review

Abstract

We study the complexity of deciding the equality of streams specified by systems of equations. There are several notions of stream models in the literature, each generating a different semantics of stream equality. We pinpoint the complexity of each of these notions in the arithmetical or analytical hierarchy. Their complexity ranges from low levels of the arithmetical hierarchy such as Π0 2 for the most relaxed stream models, to levels of the analytical hierarchy such as Π1 1 and up to subsuming the entire analytical hierarchy for more restrictive but natural stream models. Since all these classes properly include both the semi-decidable and co-semi-decidable classes, it follows that regardless of the stream semantics employed, there is no complete proof system or algorithm for determining equality or inequality of streams. We also discuss several related problems, such as the existence and uniqueness of stream solutions for systems of equations, as well as the equality of such solutions.

Original languageEnglish (US)
Pages (from-to)166-217
Number of pages52
JournalJournal of Functional Programming
Volume24
Issue number2-3
DOIs
StatePublished - 2014

ASJC Scopus subject areas

  • Software

Fingerprint

Dive into the research topics of 'On the complexity of stream equality'. Together they form a unique fingerprint.

Cite this