TY - JOUR
T1 - On set systems without weak 3-Δ-subsystems
AU - Axenovich, M.
AU - Fon-Der-Flaass, D.
AU - Kostochka, A.
N1 - Funding Information:
* Corresponding author. On leave from Institute of Mathematics, Novosibirsk, 630090, Russian Federation. 2 Supported by the grant 93-011-1486 of the Russian Fundamental Research Foundation.
PY - 1995/3/6
Y1 - 1995/3/6
N2 - A collection of sets is called a weak Δ-system if sizes of all pairwise intersections of these sets coincide. We prove a new upper bound on the function fw(n), the maximal size of a collection of n-element sets no three of which form a weak Δ-system. Namely, we prove that, for every δ > 0. fw(n) = 0(n! 1 2 + b).
AB - A collection of sets is called a weak Δ-system if sizes of all pairwise intersections of these sets coincide. We prove a new upper bound on the function fw(n), the maximal size of a collection of n-element sets no three of which form a weak Δ-system. Namely, we prove that, for every δ > 0. fw(n) = 0(n! 1 2 + b).
UR - http://www.scopus.com/inward/record.url?scp=0011022364&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0011022364&partnerID=8YFLogxK
U2 - 10.1016/0012-365X(94)00185-L
DO - 10.1016/0012-365X(94)00185-L
M3 - Article
AN - SCOPUS:0011022364
SN - 0012-365X
VL - 138
SP - 57
EP - 62
JO - Discrete Mathematics
JF - Discrete Mathematics
IS - 1-3
ER -