TY - JOUR
T1 - On semifree symplectic circle actions with isolated fixed points
AU - Tolman, Susan
AU - Weitsman, Jonathan
N1 - Funding Information:
* Corresponding author. Tel.: 001-831-459-2154; fax: 001-831-459-3260; e-mail: [email protected]. 1 E-mail: [email protected]. ☆ S. Tolman was partially supported by an NSF Mathematical Sciences Postdoctoral Research Fellowship. J. Weitsman was partially supported by NSF grant DMS 94/03567, by NSF Young Investigator grant DMS 94/57821, and by an Alfred P. Sloan Foundation Fellowship.
PY - 2000/3
Y1 - 2000/3
N2 - Let M be a symplectic manifold, equipped with a semi-free symplectic circle action with a finite, non-empty fixed point set. We show that the circle action must be Hamiltonian, and M must have the equivariant cohomology and Chern classes of (P1)n.
AB - Let M be a symplectic manifold, equipped with a semi-free symplectic circle action with a finite, non-empty fixed point set. We show that the circle action must be Hamiltonian, and M must have the equivariant cohomology and Chern classes of (P1)n.
UR - http://www.scopus.com/inward/record.url?scp=0034148262&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0034148262&partnerID=8YFLogxK
U2 - 10.1016/S0040-9383(99)00011-7
DO - 10.1016/S0040-9383(99)00011-7
M3 - Article
AN - SCOPUS:0034148262
SN - 0040-9383
VL - 39
SP - 299
EP - 309
JO - Topology
JF - Topology
IS - 2
ER -