@inproceedings{ee60d7a6b9e240d0ba217e2cfb7d4acf,
title = "On projected stochastic gradient descent algorithm with weighted averaging for least squares regression",
abstract = "The problem of least squares regression of a ridimensionai unknown parameter is considered. A stochastic gradient descent based algorithm with weighted iterate-averaging that uses a single pass over the data is studied and its convergence rate is analyzed. We first consider a bounded constraint set of the unknown parameter. Under some standard regularity assumptions, we provide an explicit O(1/k) upper bound on the convergence rate, depending on the variance (due to the additive noise in the measurements) and the size of the constraint set. We show that the variance term dominates the error and decreases with rate 1 /k, while the constraint set term decreases with rate log k/k2. We then compare the asymptotic ratio ρ between the convergence rate of the proposed scheme and the empirical risk minimizer (ERM) as the number of iterations approaches infinity. We show that ρ 1. We further improve the upper bound by showing that ρ < 4/3 for the case of d =1 and unbounded parameter set. Simulation results demonstrate strong performance of the algorithm as compared to existing methods, and coincide with ρ < 4/3 even for large d in practice.",
keywords = "Convex optimization, empirical risk mini-mizer, projected stochastic gradient descent, weighted averaging",
author = "Kobi Cohen and Angelia Nedic and R. Srikant",
note = "Publisher Copyright: {\textcopyright} 2016 IEEE.; 41st IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2016 ; Conference date: 20-03-2016 Through 25-03-2016",
year = "2016",
month = may,
day = "18",
doi = "10.1109/ICASSP.2016.7472090",
language = "English (US)",
series = "ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
pages = "2314--2318",
booktitle = "2016 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2016 - Proceedings",
address = "United States",
}