@inproceedings{00669d488fd345009240075b250a1847,
title = "On predicting social unrest using social media",
abstract = "We study the possibility of predicting a social protest (planned, or unplanned) based on social media messaging. We consider the process called mobilization, described in the literature as the precursor of participation. Mobilization includes four stages: being sympathetic to the cause, being aware of the movement, motivation to take part and ability to participate. We suggest that expressions of mobilization in communications of individuals may be used to predict the approaching protest. We have utilized several Natural Language Processing techniques to create a methodology to identify mobilization in social media communication. Results of experimentation with Twitter data collected before and during the 2015 Baltimore events and the information on actual protests taken from news media show a correlation over time between volume of Twitter communications related to mobilization and occurrences of protest at certain geographical locations. We conclude with discussion of possible theoretical explanations and practical applications of these results.",
author = "Rostyslav Korolov and Di Lu and Jingjing Wang and Guangyu Zhou and Claire Bonial and Clare Voss and Lance Kaplan and William Wallace and Jiawei Han and Heng Ji",
note = "Publisher Copyright: {\textcopyright} 2016 IEEE.; 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2016 ; Conference date: 18-08-2016 Through 21-08-2016",
year = "2016",
month = nov,
day = "21",
doi = "10.1109/ASONAM.2016.7752218",
language = "English (US)",
series = "Proceedings of the 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2016",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
pages = "89--95",
editor = "Ravi Kumar and James Caverlee and Hanghang Tong",
booktitle = "Proceedings of the 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2016",
address = "United States",
}