On nonlinear controllability of homogeneous systems linear in control

James Melody, Tamer Başar, Francesco Bullo

Research output: Contribution to journalArticlepeer-review


This work considers small-time local controllability (STLC) of single- and multiple-input systems, ẋ = f0 (x) + Σi=1m fiui where f0 (x) contains homogeneous polynomials and f1,...,fm are constant vector fields. For single-input systems, it is shown that even-degree homogeneity precludes STLC if the state dimension is larger than one. This, along with the obvious result that for odd-degree homogeneous systems STLC is equivalent to accessibility, provides a complete characterization of STLC for this class of systems. In the multiple-input case, transformations on the input space are applied to homogeneous systems of degree two, an example of this type of system being motion of a rigid-body in a plane. Such input transformations are related via consideration of a tensor on the tangent space to congruence transformation of a matrix to one with zeros on the diagonal. Conditions are given for successful neutralization of bad type (1,2) brackets via congruence transformations.

Original languageEnglish (US)
Pages (from-to)139-143
Number of pages5
JournalIEEE Transactions on Automatic Control
Issue number1
StatePublished - Jan 2003


  • Controllability
  • Lie algebras
  • Nonlinear systems

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Computer Science Applications
  • Electrical and Electronic Engineering


Dive into the research topics of 'On nonlinear controllability of homogeneous systems linear in control'. Together they form a unique fingerprint.

Cite this