On MR experiment design with quadratic regularization

Justin P. Haldar, Zhi-Pei Liang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The design of MRI experiments represents a trade-off between acquisition time, signal-to-noise ratio (SNR), and resolution. For fixed acquisition time and reconstruction resolution, it has been widely believed that the optimal acquisition strategy is to avoid collecting k-space data at frequencies higher than the nominal image resolution. While this belief is true under certain metrics, we observe in this work that a high-resolution acquisition strategy, combined with an appropriate linear filtering/regularization strategy, leads to significantly improved SNR/resolution efficiency for the majority of common resolution metrics. Analysis of this surprising result leads to practical methods for the improved design of imaging experiments and the selection of efficient quadratic regularization penalties.

Original languageEnglish (US)
Title of host publication2011 8th IEEE International Symposium on Biomedical Imaging
Subtitle of host publicationFrom Nano to Macro, ISBI'11
Pages1676-1679
Number of pages4
DOIs
StatePublished - 2011
Event2011 8th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI'11 - Chicago, IL, United States
Duration: Mar 30 2011Apr 2 2011

Publication series

NameProceedings - International Symposium on Biomedical Imaging
ISSN (Print)1945-7928
ISSN (Electronic)1945-8452

Other

Other2011 8th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI'11
Country/TerritoryUnited States
CityChicago, IL
Period3/30/114/2/11

Keywords

  • Experiment Design
  • Magnetic Resonance Imaging
  • Regularization
  • Resolution

ASJC Scopus subject areas

  • Biomedical Engineering
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'On MR experiment design with quadratic regularization'. Together they form a unique fingerprint.

Cite this