Abstract
Lopez-Pamies and Idiart (2010, "Fiber-Reinforced Hyperelastic Solids: A Realizable Homogenization Constitutive Theory," J. Eng. Math., 68(1), pp. 57-83) have recently put forward a homogenization theory with the capability to generate exact results not only for the macroscopic response and stability but also for the evolution of the microstructure in fiber-reinforced hyperelastic solids subjected to finite deformations. In this paper, we make use of this new theory to construct exact, closed-form solutions for the change in size, shape, and orientation undergone by the underlying fibers in a model class of fiber-reinforced hyperelastic solids along arbitrary 3D loading conditions. Making use of these results, we then establish connections between the evolution of the microstructure and the overall stress-strain relation and macroscopic stability in fiber-reinforced elastomers. In particular, we show that the rotation of the fibers may lead to the softening of the overall stiffness of fiber-reinforced elastomers under certain loading conditions. Furthermore, we show that this geometric mechanism is intimately related to the development of long-wavelength instabilities. These findings are discussed in light of comparisons with recent results for related material systems.
Original language | English (US) |
---|---|
Article number | 011007 |
Journal | Journal of Engineering Materials and Technology |
Volume | 133 |
Issue number | 1 |
DOIs | |
State | Published - 2011 |
Externally published | Yes |
Keywords
- Hamilton-Jacobi equation
- finite strain
- homogenization
- instabilities
- microstructures
ASJC Scopus subject areas
- General Materials Science
- Condensed Matter Physics
- Mechanics of Materials
- Mechanical Engineering