Abstract
A favorite open problem in combinatorial geometry is to determine the worst-case complexity of a level in an arrangement. Up to now, nontrivial upper bounds in three dimensions are known only for the linear cases of planes and triangles. We propose the first technique that can deal with more general surfaces in three dimensions. For example, in an arrangement of n "pseudo-planes" or "pseudo-spheres" (where each triple of surfaces has at most two common intersections), we prove that there are at most O(n2.9986) vertices of any given level.
Original language | English (US) |
---|---|
Pages | 232-240 |
Number of pages | 9 |
State | Published - 2005 |
Externally published | Yes |
Event | Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms - Vancouver, BC, United States Duration: Jan 23 2005 → Jan 25 2005 |
Other
Other | Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms |
---|---|
Country/Territory | United States |
City | Vancouver, BC |
Period | 1/23/05 → 1/25/05 |
ASJC Scopus subject areas
- Software
- General Mathematics