TY - GEN
T1 - On learning invariant representations for domain adaptation
AU - Zhao, Han
AU - des Combes, Remi Tachet
AU - Zhang, Kun
AU - Gordon, Geoffrey J.
N1 - Funding Information:
HZ thank Yifan Wu for inspiring discussion on possible failure cases of deep domain adaptation, and Jeremy Cohen for reviewing drafts of this work. HZ and GG would like to acknowledge the support from DARPA XAI project, contract #FA87501720152. KZ would like to acknowledge the support by National Institutes of Health (NIH) under Contract No. NIH-1R01EB022858-01, FAINR01EB022858, NIH-1R01LM012087, NIH-5U54HG008540-02, and FAINU54HG008540, by the United States Air Force under Contract No. FA8650-17-C-7715, and by National Science Foundation (NSF) EAGER Grant No. IIS-1829681. The NIH, the U.S. Air Force, and the NSF arc not responsible for the views reported in this article.
Publisher Copyright:
© 36th International Conference on Machine Learning, ICML 2019. All rights reserved.
PY - 2019
Y1 - 2019
N2 - Due to the ability of deep neural nets to learn rich representations, recent advances in unsupervised domain adaptation have focused on learning domain-invariant features that achieve a small error on the source domain. The hope is that the learnt representation, together with the hypothesis learnt from the source domain, can generalize to the target domain. In this paper, we first construct a simple counterexample showing that, contrary to common belief, the above conditions are not sufficient to guarantee successful domain adaptation. In particular, the counterexample exhibits conditional shift: the class-conditional distributions of input features change between source and target domains. To give a sufficient condition for domain adaptation, we propose a natural and interpretable generalization upper bound that explicitly takes into account the aforementioned shift. Moreover, we shed new light on the problem by proving an information-theoretic lower bound on the joint error of any domain adaptation method that attempts to learn invariant representations. Our result characterizes a fundamental tradeoff between learning invariant representations and achieving small joint error on both domains when the marginal label distributions differ from source to target. Finally, we conduct experiments on real-world datasets that corroborate our theoretical findings. We believe these insights are helpful in guiding the future design of domain adaptation and representation learning algorithms.
AB - Due to the ability of deep neural nets to learn rich representations, recent advances in unsupervised domain adaptation have focused on learning domain-invariant features that achieve a small error on the source domain. The hope is that the learnt representation, together with the hypothesis learnt from the source domain, can generalize to the target domain. In this paper, we first construct a simple counterexample showing that, contrary to common belief, the above conditions are not sufficient to guarantee successful domain adaptation. In particular, the counterexample exhibits conditional shift: the class-conditional distributions of input features change between source and target domains. To give a sufficient condition for domain adaptation, we propose a natural and interpretable generalization upper bound that explicitly takes into account the aforementioned shift. Moreover, we shed new light on the problem by proving an information-theoretic lower bound on the joint error of any domain adaptation method that attempts to learn invariant representations. Our result characterizes a fundamental tradeoff between learning invariant representations and achieving small joint error on both domains when the marginal label distributions differ from source to target. Finally, we conduct experiments on real-world datasets that corroborate our theoretical findings. We believe these insights are helpful in guiding the future design of domain adaptation and representation learning algorithms.
UR - http://www.scopus.com/inward/record.url?scp=85073247963&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85073247963&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85073247963
T3 - 36th International Conference on Machine Learning, ICML 2019
SP - 12985
EP - 12999
BT - 36th International Conference on Machine Learning, ICML 2019
PB - International Machine Learning Society (IMLS)
T2 - 36th International Conference on Machine Learning, ICML 2019
Y2 - 9 June 2019 through 15 June 2019
ER -