Abstract
We study the dynamic stability of the perfectly matched layer (PML) absorbing boundary condition for finite-difference time-domain (FDTD) simulations of electromagnetic scattering problems. This work extends our previous stability analysis of Cartesian, cylindrical and spherical PML's to the case of a conformal PML. Numerical results illustrate the main findings.
Original language | English (US) |
---|---|
Pages | 396-399 |
Number of pages | 4 |
State | Published - Dec 1 1999 |
Event | 1999 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference Proceedings - Rio de Janeiro, Braz Duration: Aug 9 1999 → Aug 12 1999 |
Other
Other | 1999 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference Proceedings |
---|---|
City | Rio de Janeiro, Braz |
Period | 8/9/99 → 8/12/99 |
Fingerprint
ASJC Scopus subject areas
- Condensed Matter Physics
- Electrical and Electronic Engineering
Cite this
On dynamic stability of conformal PML-FDTD for electromagnetic field computations. / Teixeira, F. L.; Hwang, K. P.; Chew, Weng Cho; Jin, Jianming.
1999. 396-399 Paper presented at 1999 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference Proceedings, Rio de Janeiro, Braz, .Research output: Contribution to conference › Paper
}
TY - CONF
T1 - On dynamic stability of conformal PML-FDTD for electromagnetic field computations
AU - Teixeira, F. L.
AU - Hwang, K. P.
AU - Chew, Weng Cho
AU - Jin, Jianming
PY - 1999/12/1
Y1 - 1999/12/1
N2 - We study the dynamic stability of the perfectly matched layer (PML) absorbing boundary condition for finite-difference time-domain (FDTD) simulations of electromagnetic scattering problems. This work extends our previous stability analysis of Cartesian, cylindrical and spherical PML's to the case of a conformal PML. Numerical results illustrate the main findings.
AB - We study the dynamic stability of the perfectly matched layer (PML) absorbing boundary condition for finite-difference time-domain (FDTD) simulations of electromagnetic scattering problems. This work extends our previous stability analysis of Cartesian, cylindrical and spherical PML's to the case of a conformal PML. Numerical results illustrate the main findings.
UR - http://www.scopus.com/inward/record.url?scp=0033292995&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0033292995&partnerID=8YFLogxK
M3 - Paper
AN - SCOPUS:0033292995
SP - 396
EP - 399
ER -