TY - GEN
T1 - On detecting Association-Based Clique Outliers in heterogeneous information networks
AU - Gupta, Manish
AU - Gao, Jing
AU - Yan, Xifeng
AU - Cam, Hasan
AU - Han, Jiawei
PY - 2013
Y1 - 2013
N2 - In the real world, various systems can be modeled using heterogeneous networks which consist of entities of different types. People like to discover groups (or cliques) of entities linked to each other with rare and surprising associations from such networks. We define such anomalous cliques as Association-Based Clique Outliers (ABCOutliers) for heterogeneous information networks, and design effective approaches to detect them. The need to find such outlier cliques from networks can be formulated as a conjunctive select query consisting of a set of (type, predicate) pairs. Answering such conjunctive queries efficiently involves two main challenges: (1) computing all matching cliques which satisfy the query and (2) ranking such results based on the rarity and the interestingness of the associations among entities in the cliques. In this paper, we address these two challenges as follows. First, we introduce a new low-cost graph index to assist clique matching. Second, we define the outlierness of an association between two entities based on their attribute values and provide a methodology to efficiently compute such outliers given a conjunctive select query. Experimental results on several synthetic datasets and the Wikipedia dataset containing thousands of entities show the effectiveness of the proposed approach in computing interesting ABCOutliers.
AB - In the real world, various systems can be modeled using heterogeneous networks which consist of entities of different types. People like to discover groups (or cliques) of entities linked to each other with rare and surprising associations from such networks. We define such anomalous cliques as Association-Based Clique Outliers (ABCOutliers) for heterogeneous information networks, and design effective approaches to detect them. The need to find such outlier cliques from networks can be formulated as a conjunctive select query consisting of a set of (type, predicate) pairs. Answering such conjunctive queries efficiently involves two main challenges: (1) computing all matching cliques which satisfy the query and (2) ranking such results based on the rarity and the interestingness of the associations among entities in the cliques. In this paper, we address these two challenges as follows. First, we introduce a new low-cost graph index to assist clique matching. Second, we define the outlierness of an association between two entities based on their attribute values and provide a methodology to efficiently compute such outliers given a conjunctive select query. Experimental results on several synthetic datasets and the Wikipedia dataset containing thousands of entities show the effectiveness of the proposed approach in computing interesting ABCOutliers.
UR - http://www.scopus.com/inward/record.url?scp=84893297393&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84893297393&partnerID=8YFLogxK
U2 - 10.1145/2492517.2492526
DO - 10.1145/2492517.2492526
M3 - Conference contribution
AN - SCOPUS:84893297393
SN - 9781450322409
T3 - Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2013
SP - 108
EP - 115
BT - Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2013
PB - Association for Computing Machinery
T2 - 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2013
Y2 - 25 August 2013 through 28 August 2013
ER -