TY - GEN
T1 - On Bayesian interpretation of fact-finding in information networks
AU - Wang, Dong
AU - Abdelzaher, Tarek
AU - Ahmadi, Hossein
AU - Pasternack, Jeff
AU - Roth, Dan
AU - Gupta, Manish
AU - Han, Jiawei
AU - Fatemieh, Omid
AU - Le, Hieu
AU - Aggarwal, Charu C.
PY - 2011
Y1 - 2011
N2 - When information sources are unreliable, information networks have been used in data mining literature to uncover facts from large numbers of complex relations between noisy variables. The approach relies on topology analysis of graphs, where nodes represent pieces of (unreliable) information and links represent abstract relations. Such topology analysis was often empirically shown to be quite powerful in extracting useful conclusions from large amounts of poor-quality information. However, no systematic analysis was proposed for quantifying the accuracy of such conclusions. In this paper, we present, for the first time, a Bayesian interpretation of the basic mechanism used in fact-finding from information networks. This interpretation leads to a direct quantification of the accuracy of conclusions obtained from information network analysis. Hence, we provide a general foundation for using information network analysis not only to heuristically extract likely facts, but also to quantify, in an analytically-founded manner, the probability that each fact or source is correct. Such probability constitutes a measure of quality of information (QoI). Hence, the paper presents a new foundation for QoI analysis in information networks, that is of great value in deriving information from unreliable sources. The framework is applied to a representative fact-finding problem, and is validated by extensive simulation where analysis shows significant improvement over past work and great correspondence with ground truth.
AB - When information sources are unreliable, information networks have been used in data mining literature to uncover facts from large numbers of complex relations between noisy variables. The approach relies on topology analysis of graphs, where nodes represent pieces of (unreliable) information and links represent abstract relations. Such topology analysis was often empirically shown to be quite powerful in extracting useful conclusions from large amounts of poor-quality information. However, no systematic analysis was proposed for quantifying the accuracy of such conclusions. In this paper, we present, for the first time, a Bayesian interpretation of the basic mechanism used in fact-finding from information networks. This interpretation leads to a direct quantification of the accuracy of conclusions obtained from information network analysis. Hence, we provide a general foundation for using information network analysis not only to heuristically extract likely facts, but also to quantify, in an analytically-founded manner, the probability that each fact or source is correct. Such probability constitutes a measure of quality of information (QoI). Hence, the paper presents a new foundation for QoI analysis in information networks, that is of great value in deriving information from unreliable sources. The framework is applied to a representative fact-finding problem, and is validated by extensive simulation where analysis shows significant improvement over past work and great correspondence with ground truth.
KW - Bayesian inference
KW - Information networks
KW - Sensors
UR - http://www.scopus.com/inward/record.url?scp=80052521763&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80052521763&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:80052521763
SN - 9781457702679
T3 - Fusion 2011 - 14th International Conference on Information Fusion
BT - Fusion 2011 - 14th International Conference on Information Fusion
T2 - 14th International Conference on Information Fusion, Fusion 2011
Y2 - 5 July 2011 through 8 July 2011
ER -