TY - JOUR
T1 - On automorphic points in polarized deformation rings
AU - Allen, Patrick B.
N1 - Publisher Copyright:
© 2019 by Johns Hopkins University Press.
PY - 2019/2/1
Y1 - 2019/2/1
N2 - For a fixed mod p automorphic Galois representation, p-adic automorphic Galois representations lifting it determine points in universal deformation space. In the case of modular forms and under some technical conditions, Böckle showed that every component of deformation space contains a smooth modular point, which then implies their Zariski density when coupled with the infinite fern of Gouvêa-Mazur. We generalize Böckle’s result to the context of polarized Galois representations for CM fields, and to two dimensional Galois representations for totally real fields. More specifically, under assumptions necessary to apply a small R = T theorem and an assumption on the local mod p representation, we prove that every irreducible component of the universal polarized deformation space contains an automorphic point. When combined with work of Chenevier, this implies new results on the Zariski density of automorphic points in polarized deformation space in dimension three.
AB - For a fixed mod p automorphic Galois representation, p-adic automorphic Galois representations lifting it determine points in universal deformation space. In the case of modular forms and under some technical conditions, Böckle showed that every component of deformation space contains a smooth modular point, which then implies their Zariski density when coupled with the infinite fern of Gouvêa-Mazur. We generalize Böckle’s result to the context of polarized Galois representations for CM fields, and to two dimensional Galois representations for totally real fields. More specifically, under assumptions necessary to apply a small R = T theorem and an assumption on the local mod p representation, we prove that every irreducible component of the universal polarized deformation space contains an automorphic point. When combined with work of Chenevier, this implies new results on the Zariski density of automorphic points in polarized deformation space in dimension three.
UR - http://www.scopus.com/inward/record.url?scp=85062081867&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85062081867&partnerID=8YFLogxK
U2 - 10.1353/ajm.2019.0003
DO - 10.1353/ajm.2019.0003
M3 - Article
AN - SCOPUS:85062081867
SN - 0002-9327
VL - 141
SP - 119
EP - 167
JO - American Journal of Mathematics
JF - American Journal of Mathematics
IS - 1
ER -